Recursive and iterative clustering in granular hierarchical, network, and temporal datasets

粒度分层、网络和时间数据集中的递归和迭代聚类

基本信息

  • 批准号:
    123746-2013
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

Clustering is one of the frequently used unsupervised data mining techniques for grouping similar objects. The proposed research program will investigate a novel iterative approach to clustering in a granular environment. An information granule represents an object. For example, a customer with certain purchasing patterns could be represented by an information granule. A granule is usually connected to other granules. For example, in a hierarchical environment, a customer granule will be connected to a number of product granules and vice versa. In a granular network, phone users are connected to other phone users. In a granular temporal environment, a daily pattern of events is connected to historical and future daily patterns. Traditionally, clustering of granules is done in isolation without any information on clustering of the connected granules. The primary theme of the proposed research is to simultaneously cluster all the granules iteratively. Each iteration will use results of previous clustering of connected granules, until a stable clustering of all the granules is achieved. In a hierarchical environment such as customers and products, it will mean that clustering of customers uses profiles of product clusters, and vice versa. For networked granules, a phone user is clustered using cluster profiles of the other connected users. In a temporal granular clustering, daily patterns will be clustered based on clustered profiles of historical and future patterns. These repeated applications of clustering are termed iterative in a hierarchy and are termed recursive in networks. The integrated meta-clustering of hierarchical, network, and temporal data is a multi-faceted project. Since clustering is unsupervised and we do not know the expected outcomes, it is important to study the quality of the resultant clustering. In addition to deriving quantitative evaluations, the notion of preference will be used to value a cluster based on how well-connected it is to more desirable objects. The iterative and recursive algorithms will be further modified for fuzzy and rough clustering, which allow an object to belong to multiple clusters. We plan to design, develop, implement, and test variations of the clustering algorithms for retail, mobile phone, engineering, and financial datasets.
聚类是一种常用的无监督数据挖掘技术,用于对相似对象进行分组。拟议的研究计划将调查一种新的迭代方法,在粒度环境中的聚类。一个信息颗粒代表一个对象。例如,具有特定购买模式的客户可以由信息粒表示。一个颗粒通常与其他颗粒相连。例如,在分层环境中,客户颗粒将连接到多个产品颗粒,反之亦然。在粒度网络中,电话用户连接到其他电话用户。在粒度时间环境中,事件的日常模式与历史和未来的日常模式相关联。传统上,颗粒的聚类是孤立地进行的,没有任何关于连接颗粒聚类的信息。所提出的研究的主要主题是同时集群的所有颗粒迭代。每次迭代将使用先前连接颗粒的聚类结果,直到实现所有颗粒的稳定聚类。在客户和产品这样的分层环境中,这意味着客户的聚类使用产品聚类的配置文件,反之亦然。对于联网的颗粒,使用其他连接的用户的集群配置文件对电话用户进行集群。在时间粒度聚类中,日常模式将基于历史和未来模式的聚类简档来聚类。这些重复的集群应用在层次结构中被称为迭代,在网络中被称为递归。层次、网络和时态数据的集成元聚类是一个多方面的工程。由于聚类是无监督的,我们不知道预期的结果,因此研究结果聚类的质量很重要。除了获得定量评估之外,偏好的概念将用于基于集群与更理想对象的良好连接来评估集群。迭代和递归算法将进一步修改为模糊和粗糙聚类,这允许一个对象属于多个聚类。我们计划设计、开发、实施和测试零售、移动的电话、工程和金融数据集的集群算法变体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lingras, Pawan其他文献

AEDNav: indoor navigation for locating automated external defibrillator.
  • DOI:
    10.1186/s12911-022-01886-7
  • 发表时间:
    2022-06-20
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Rao, Gaurav;Mago, Vijay;Lingras, Pawan;Savage, David W.
  • 通讯作者:
    Savage, David W.
Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification
  • DOI:
    10.1016/j.ins.2007.03.028
  • 发表时间:
    2007-09-15
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Lingras, Pawan;Butz, Cory
  • 通讯作者:
    Butz, Cory
Rough Cluster Quality Index Based on Decision Theory
基于决策理论的粗聚类质量指标
Granular meta-clustering based on hierarchical, network, and temporal connections
  • DOI:
    10.1007/s41066-015-0007-9
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Lingras, Pawan;Haider, Farhana;Triff, Matt
  • 通讯作者:
    Triff, Matt
Qualitative and quantitative combinations of crisp and rough clustering schemes using dominance relations

Lingras, Pawan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lingras, Pawan', 18)}}的其他基金

Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Medical Diagnosis using Raman Spectrographs and Machine Learning
使用拉曼光谱仪和机器学习进行医疗诊断
  • 批准号:
    521157-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program
Adaptive recognition of time series of images for warehouse inventory cataloging
用于仓库库存编目的时间序列图像的自适应识别
  • 批准号:
    494282-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Collaborative Research and Development Grants
Adaptive recognition of time series of images for warehouse inventory cataloging
用于仓库库存编目的时间序列图像的自适应识别
  • 批准号:
    494282-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Collaborative Research and Development Grants
Recursive and iterative clustering in granular hierarchical, network, and temporal datasets
粒度分层、网络和时间数据集中的递归和迭代聚类
  • 批准号:
    123746-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Updating server inventory database through image recognition
通过图像识别更新服务器库存数据库
  • 批准号:
    485507-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program
Recursive and iterative clustering in granular hierarchical, network, and temporal datasets
粒度分层、网络和时间数据集中的递归和迭代聚类
  • 批准号:
    123746-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Investigating Iterative Interrelations in Socio-Environmental Processes to Improve Climate Change Attribution Research
职业:调查社会环境过程中的迭代相互关系以改进气候变化归因研究
  • 批准号:
    2338058
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Iterative Improvement of a Program for Building Inclusive, Diverse, Equitable, Accessible Large-scale (IDEAL) Participatory Science Projects
迭代改进建立包容、多样化、公平、可访问的大型(IDEAL)参与性科学项目的计划
  • 批准号:
    2313996
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
  • 批准号:
    10552325
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Iterative Macromolecular Functionalization
迭代大分子功能化
  • 批准号:
    2304952
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Simulation Academy at Yale: Youth Entering Science (SAY-YES!)
耶鲁大学模拟学院:青年进入科学(说是!)
  • 批准号:
    10663646
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
  • 批准号:
    10753822
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
  • 批准号:
    10716509
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Development of an Interactive Bioethics Training Module for Healthcare Providers Treating Patients Who Need Liver Transplant for Alcohol-associated Liver Disease
为治疗酒精相关性肝病需要肝移植的患者的医疗保健提供者开发交互式生物伦理学培训模块
  • 批准号:
    10785093
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
A Learning Health System to increase organ donation and equity in populations experiencing health disparities
学习健康系统可增加健康差异人群的器官捐赠和公平性
  • 批准号:
    10731576
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Exploring PTSD Symptoms, Barriers and Facilitators to Mindfulness-based Stress Reduction for Justice-Involved Black/African American Female Adolescents and Parents/Caregivers
探索创伤后应激障碍 (PTSD) 症状、障碍和促进因素,为涉及正义的黑人/非裔美国女性青少年和父母/照顾者进行基于正念的减压
  • 批准号:
    10593806
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了