Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
基本信息
- 批准号:170276-2010
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My work involves the structure and classification of algebraic varieties, which are objects defined by homogeneous polynomials, up to a natural equivalence, called birational equivalence. Two such objects are birationally equivalent if their spaces of rational functions, are naturally isomorphic. The behavior of holomorphic (i.e., complex differentiable) or algebraic functions from the complex number plane with values in them lies at the center of my investigation. Besides the classical motivation of generalizing Picard's theorems (Lang's conjecture on the pseudo-hyperbolicity of varieties of general type), there is also strong motivation from number theory, such as the Mordell conjecture on the finiteness of solutions to a set of polynomials in terms of rational numbers if the variety defined is a curve of general type (solved by G. Faltings, for which he obtained the highest honor in Mathematics, the Fields Medal). Faltings gave two solutions to the Mordell conjecture, the second using an idea of Vojta-Mazur on the parallel between the value distribution theory of holomorphic curves, Pioneered by Nevanlinna, and the distribution of rational or algebraic points (i.e. solutions by integers or by radicals of integers of the homogeneous equations defining the variety). It is therefore hoped that a deeper understanding of the structure of curves in an algebraic variety would eventually lead to unlocking the mysteries of the similarities seen between natural questions in number theory and those concerning the behavior of holomorphic and algebraic curves.
我的工作涉及代数簇的结构和分类,代数簇是由齐次多项式定义的对象,直到一个自然等价,称为双有理等价。两个这样的对象是双有理等价的,如果它们的有理函数空间自然同构。全纯的行为(即,复可微)或代数函数从复数平面与价值在他们是我的调查中心。除了推广Picard定理的经典动机(关于一般类型簇的伪双曲性的Lang猜想)之外,还有来自数论的强烈动机,例如关于一组多项式的有理数解的有限性的Mordell猜想,如果定义的簇是一般类型的曲线(由G.他因此获得了数学界的最高荣誉--菲尔兹奖。Faltings了两个解决方案的莫德尔猜想,第二个使用的想法Vojta马祖尔之间的平行价值分布理论的全纯曲线,开创了Nevanlinna,和分布的合理或代数点(即解决方案的整数或自由基的整数齐次方程定义的品种)。因此,人们希望,对代数簇中曲线结构的更深入理解,最终将导致解开数论中自然问题与全纯曲线和代数曲线行为之间相似性的奥秘。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu, Steven其他文献
Synthetic biodegradable hydrogel delivery of demineralized bone matrix for bone augmentation in a rat model.
- DOI:
10.1016/j.actbio.2014.07.011 - 发表时间:
2014-11 - 期刊:
- 影响因子:9.7
- 作者:
Kinard, Lucas A.;Dahlin, Rebecca L.;Lam, Johnny;Lu, Steven;Lee, Esther J.;Kasper, F. Kurtis;Mikos, Antonios G. - 通讯作者:
Mikos, Antonios G.
Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2.
- DOI:
10.1016/j.actbio.2014.05.011 - 发表时间:
2014-10 - 期刊:
- 影响因子:9.7
- 作者:
Needham, Clark J.;Shah, Santa R.;Dahlin, Rebecca L.;Kinard, Lucas A.;Lam, Johnny;Watson, Brendan M.;Lu, Steven;Kasper, F. Kurtis;Mikos, Antonios G. - 通讯作者:
Mikos, Antonios G.
Short term outcomes and unintended benefits of establishing a HPB program at a university-affiliated community hospital
- DOI:
10.1016/j.amjsurg.2019.03.015 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:3
- 作者:
Lu, Steven;Khatri, Richa;Munene, Gitonga - 通讯作者:
Munene, Gitonga
Fabrication of Cell-Laden Macroporous Biodegradable Hydrogels with Tunable Porosities and Pore Sizes
- DOI:
10.1089/ten.tec.2014.0224 - 发表时间:
2015-03-01 - 期刊:
- 影响因子:3
- 作者:
Wang, Limin;Lu, Steven;Mikos, Antonios G. - 通讯作者:
Mikos, Antonios G.
Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.
- DOI:
10.1016/j.biomaterials.2014.05.055 - 发表时间:
2014-08 - 期刊:
- 影响因子:14
- 作者:
Dahlin, Rebecca L.;Kinard, Lucas A.;Lam, Johnny;Needham, Clark J.;Lu, Steven;Kasper, F. Kurtis;Mikos, Antonios G. - 通讯作者:
Mikos, Antonios G.
Lu, Steven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu, Steven', 18)}}的其他基金
Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
- 批准号:
RGPIN-2022-05387 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
- 批准号:
170276-2010 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
- 批准号:
170276-2010 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolicity and classification theory in complex algebraic geometry
复代数几何中的双曲性和分类理论
- 批准号:
170276-2010 - 财政年份:2011
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于传孢类型藓类植物系统的修订
- 批准号:30970188
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Multidimensional brain connectome features of depression and anxiety
抑郁和焦虑的多维脑连接组特征
- 批准号:
10571512 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
CAREER: Model theoretic classification theory, Fourier analysis, and hypergraph regularity
职业:模型理论分类理论、傅立叶分析和超图正则性
- 批准号:
2239737 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Human Cerebrospinal Fluid Extracellular Vesicles: Utility as Disease Specific Biomarkers and Impact on Alzheimer's Disease Pathology
人脑脊液细胞外囊泡:作为疾病特异性生物标志物的用途及其对阿尔茨海默病病理学的影响
- 批准号:
10661249 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Learning-induced changes in distinct auditory cortical cell-types
学习引起的不同听觉皮层细胞类型的变化
- 批准号:
10823770 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
The structure, classification and representation theory of locally extended affine Lie algebras
局部扩展仿射李代数的结构、分类和表示论
- 批准号:
23K03063 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
- 批准号:
10658688 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Establishing an Atrophy-Based Functional Network Model as a Biomarker for Seizure-Onset Laterality
建立基于萎缩的功能网络模型作为癫痫发作偏侧性的生物标志物
- 批准号:
10751261 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Higher classification theory in model theory and applications
模型理论与应用中的高级分类理论
- 批准号:
2246598 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
A Study Toward a Systematic Classification of Kant's Theory of Modality
康德情态理论的系统分类研究
- 批准号:
22K19973 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
- 批准号:
2154637 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant