Hopf cyclic cohomology, twisted local index formula, and noncommutative complex geometry

Hopf 循环上同调、扭曲局部指数公式和非交换复几何

基本信息

  • 批准号:
    184060-2009
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2013
  • 资助国家:
    加拿大
  • 起止时间:
    2013-01-01 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

This proposal consists of several rather independent components: the local index formula for twisted spectral triples; an elaborate study of Hopf cyclic cohomology; and noncommutative complex geometry. The notion of a twisted spectral triple has recently been introduced by Connes and Moscovici. It aims to extend the index theory to a type III setting. Here by type III we mean a situation (as in type III von Neumann algebras) where the underlying noncommutative space admits no non-zero traces. The twist automorphism is
这个建议由几个相当独立的组件:扭曲的频谱三元组的本地指数公式;一个精心研究的霍普夫循环上同调;和非交换复杂的几何。 扭曲谱三元组的概念最近由Connes和Moscovici提出。它旨在将指数理论扩展到第三类环境。这里的III型是指一种情况(如在III型冯诺依曼代数中),其中底层的非交换空间不允许非零迹。扭曲自同构是

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khalkhali, Masoud其他文献

Khalkhali, Masoud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khalkhali, Masoud', 18)}}的其他基金

Spectral Invariants of Noncommutative Spaces
非交换空间的谱不变量
  • 批准号:
    RGPIN-2019-04748
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral Invariants of Noncommutative Spaces
非交换空间的谱不变量
  • 批准号:
    RGPIN-2019-04748
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral Invariants of Noncommutative Spaces
非交换空间的谱不变量
  • 批准号:
    RGPIN-2019-04748
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Spectral Invariants of Noncommutative Spaces
非交换空间的谱不变量
  • 批准号:
    RGPIN-2019-04748
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
  • 批准号:
    RGPIN-2014-04087
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf cyclic cohomology, twisted local index formula, and noncommutative complex geometry
Hopf 循环上同调、扭曲局部指数公式和非交换复几何
  • 批准号:
    184060-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Cyclic Apelin-12新型环肽拮抗Ang II和Apelin-13诱导VSMC增殖的分子机制
  • 批准号:
    2025JJ50502
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型人工环肽 1, 12-cyclic apelin-12 拮抗 ADP 诱导的血小板聚集和血栓形成的研究
  • 批准号:
    2024JJ7431
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型 Cyclic Apelin-12 环肽拮抗 Ang II 和 Apelin-13 诱导的心 肌肥厚及其机制
  • 批准号:
    2024JJ9370
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cyclic di-AMP调控变异链球菌致病毒力的分子机制研究
  • 批准号:
    81700963
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
干扰素刺激基因2',3'环核苷酸磷酸二酯酶(CNP)抗病毒特性的研究
  • 批准号:
    31170853
  • 批准年份:
    2011
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
野油菜黄单胞菌新型双组分信号转导基因vemS/R的功能及其对致病性的调控
  • 批准号:
    30870088
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
  • 批准号:
    RGPIN-2018-04039
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
  • 批准号:
    RGPIN-2018-04039
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
  • 批准号:
    RGPIN-2018-04039
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
  • 批准号:
    RGPIN-2018-04039
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
  • 批准号:
    RGPIN-2018-04039
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
  • 批准号:
    355531-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
  • 批准号:
    355531-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
  • 批准号:
    355531-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
  • 批准号:
    355531-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
  • 批准号:
    355531-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了