Numerical methods for analysing physiological flows and cardiac electrophysiology
分析生理流和心脏电生理学的数值方法
基本信息
- 批准号:203470-2009
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerical simulations are becoming an increasingly important tool in the analysis of physiological systems and pathologies, and the development of biomedical treatment. Techniques and models from continuum mechanics and that were part of traditional engineering are now progressively introduced in medicine, often requiring the development of new simulation methods given the relative complexity of living systems. The current proposal works precisely along this objective of developing models and numerical techniques that apply to two biomedical fields, namely to physiological flows and to cardiac electrophysiology. By physiological flows, we mean blood flows but also flows and aerosol propagation in airways, linking to our previous work in these two areas. A commonality of problems in these fields, i.e. phenomena with several spatial and temporal scales modelled with time-dependent nonlinear partial differential equations, requires a commonality of simulation methods, i.e. adaptative numerical methods with a controlled level of error in space and time. Our research program concentrates on the development of such numerical methods but also includes modelling aspects, in particular for improving our current Eulerian aerosol model. The proposed research program will eventually lead to integrated analysis tools for the process from medical image segmentation => patient-specific geometry => physical model => numerical simulations => visualization.
数值模拟在生理系统和病理分析以及生物医学治疗的发展中已成为越来越重要的工具。来自连续介质力学的技术和模型是传统工程的一部分,现在逐渐被引入医学,考虑到生命系统的相对复杂性,通常需要开发新的模拟方法。目前的建议正是沿着这一目标发展模型和数值技术,适用于两个生物医学领域,即生理流动和心脏电生理学。所谓生理流动,我们指的是血液流动,也包括气道中的流动和气溶胶传播,这与我们之前在这两个领域的工作有关。这些领域的共性问题,即用时变非线性偏微分方程模拟多个时空尺度的现象,需要一种共性的模拟方法,即在空间和时间上控制误差水平的自适应数值方法。我们的研究计划集中在这些数值方法的发展,但也包括建模方面,特别是改进我们目前的欧拉气溶胶模型。拟议的研究计划最终将导致从医学图像分割=>患者特异性几何=>物理模型=>数值模拟=>可视化过程的集成分析工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bourgault, Yves其他文献
Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology
- DOI:
10.1016/j.nonrwa.2007.10.007 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:2
- 作者:
Bourgault, Yves;Coudiere, Yves;Pierre, Charles - 通讯作者:
Pierre, Charles
Modelling the action potential propagation in a heart with structural heterogeneities: From high-resolution MRI to numerical simulations
- DOI:
10.1002/cnm.3322 - 发表时间:
2020-03-09 - 期刊:
- 影响因子:2.1
- 作者:
Davidovic, Andela;Coudiere, Yves;Bourgault, Yves - 通讯作者:
Bourgault, Yves
Optimal monodomain approximations of the bidomain equations used in cardiac electrophysiology
- DOI:
10.1142/s0218202513500784 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:3.5
- 作者:
Coudiere, Yves;Bourgault, Yves;Rioux, Myriam - 通讯作者:
Rioux, Myriam
Numerical Simulations of Blood Flow in Artificial and Natural Hearts With Fluid-Structure Interaction
- DOI:
10.1111/j.1525-1594.2008.00644.x - 发表时间:
2008-11-01 - 期刊:
- 影响因子:2.4
- 作者:
Doyle, Matthew G.;Vergniaud, Jean-Baptiste;Bourgault, Yves - 通讯作者:
Bourgault, Yves
Bourgault, Yves的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bourgault, Yves', 18)}}的其他基金
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Numerical modelling, error estimation and applications
数值建模、误差估计和应用
- 批准号:
RGPIN-2014-04811 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Numerical modelling, error estimation and applications
数值建模、误差估计和应用
- 批准号:
RGPIN-2014-04811 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Numerical modelling, error estimation and applications
数值建模、误差估计和应用
- 批准号:
RGPIN-2014-04811 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Numerical modelling, error estimation and applications
数值建模、误差估计和应用
- 批准号:
RGPIN-2014-04811 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Numerical modelling, error estimation and applications
数值建模、误差估计和应用
- 批准号:
RGPIN-2014-04811 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for analysing physiological flows and cardiac electrophysiology
分析生理流和心脏电生理学的数值方法
- 批准号:
203470-2009 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship
Armenian Refugees in the Early 20th c. Japan: Mixed Methods Analysis
20世纪初的亚美尼亚难民。
- 批准号:
21K13085 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Innovative statistical methods for analysing high-dimensional counts
用于分析高维计数的创新统计方法
- 批准号:
DP210101923 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Projects
Developing methods of simultaneously analysing occurrence of several birth defects to improve identification of teratogenic medications
开发同时分析多种出生缺陷发生情况的方法,以提高致畸药物的识别能力
- 批准号:
2444769 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Development of soiling-process characterization methods for solar mirrors, for analysing mirror-cleaning-processes
开发太阳镜污染过程表征方法,用于分析镜面清洁过程
- 批准号:
2212085 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Monte Carlo Methods for Analysing High Dimensional Financial Data
用于分析高维金融数据的蒙特卡罗方法
- 批准号:
539735-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
University Undergraduate Student Research Awards
Data Fusion Approaches for Analysing Many Spatial Outcomes Jointly - Semiparametric Mixture Methods for Correlated Counting Processes and Joint Outcome Analyses
用于联合分析许多空间结果的数据融合方法 - 用于相关计数过程和联合结果分析的半参数混合方法
- 批准号:
RGPIN-2014-06187 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Integrating epidemiological and whole genome sequence data for effectively analysing infectious disease outbreak data
整合流行病学和全基因组序列数据以有效分析传染病爆发数据的统计方法
- 批准号:
2281343 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Methods for analysing national routine electronic records for cancer patients in England
分析英国癌症患者国家常规电子记录的方法
- 批准号:
MR/S020470/1 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship
Statistical methods for analysing maps in the visual brain
分析视觉大脑中的地图的统计方法
- 批准号:
DP170102263 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Projects