Methods for analyzing nonstandard longitudinal datasets
分析非标准纵向数据集的方法
基本信息
- 批准号:327093-2009
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Longitudinal data analysis is an important and now well-studied subject in biostatistics with several excellent texts providing various viewpoints on the subject. However, there are three topics that we wish to emphasize in the current proposal and which are neither part of the focus of these texts nor of the biostatistical and statistical literature. The first is the modeling of longitudinal data when the response and any time-dependent covariate(s) are not measured at the same time points. A smoothing step is required, and we will focus upon a binning approach to handle this atypical data structure and allow for longitudinal modeling using traditional mixed effects models. The second topic is joint modeling of longitudinal and survival data when the longitudinal response is measured both retrospectively and prospectively, whereas the typical arrangement is that the longitudinal response is measured only prospectively, i.e., when the start of the clock of the survival process begins. A number of issues need to be addressed with this type of data, especially as regard to estimation bias when the amount of retrospective data differs between study participants. The third topic focuses on implementing a flexible model for longitudinal data that exhibit a gradual change from an increasing to decreasing trajectory over time (or vice versa). The challenge is to try to obtain a reasonably realistic model for the mean trajectory while not overfitting the data with a high number of difficult to interpret parameters, something that may occur with a nonparametric curve-based approach. We discuss the mixed-effects bent cable regression model to achieve this often satisfying compromise. This model will also allow us to account for between-subject heterogeneity in the trajectories including where the changes occur. HQP (graduate students) will be heavily involved in attempting to address all three of these topics in this proposal.
纵向数据分析是生物统计学中一个重要且现已得到充分研究的主题,有几篇优秀的文章提供了有关该主题的各种观点。 然而,我们希望在当前提案中强调三个主题,这些主题既不是这些文本的重点,也不是生物统计和统计文献的重点。 第一个是当响应和任何时间相关协变量不是在同一时间点测量时的纵向数据建模。 需要平滑步骤,我们将重点关注分箱方法来处理这种非典型数据结构,并允许使用传统混合效应模型进行纵向建模。 第二个主题是纵向和生存数据的联合建模,当纵向响应被回顾性和前瞻性地测量时,而典型的安排是纵向响应仅被前瞻性地测量,即当生存过程的时钟开始时。 此类数据需要解决许多问题,特别是当研究参与者之间的回顾性数据量不同时,估计偏差问题。 第三个主题侧重于实现纵向数据的灵活模型,该模型随着时间的推移呈现从增加到减少轨迹的逐渐变化(反之亦然)。 挑战在于尝试获得平均轨迹的相当现实的模型,同时又不会用大量难以解释的参数过度拟合数据,这种情况在基于非参数曲线的方法中可能会发生。 我们讨论混合效应弯曲电缆回归模型,以实现这种通常令人满意的折衷方案。 该模型还将使我们能够解释轨迹中受试者之间的异质性,包括发生变化的位置。 HQP(研究生)将积极参与尝试解决本提案中的所有这三个主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dubin, Joel其他文献
Dubin, Joel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dubin, Joel', 18)}}的其他基金
New methods for predictive models for univariate and multivariate longitudinal response data
单变量和多变量纵向响应数据预测模型的新方法
- 批准号:
RGPIN-2020-04382 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
New methods for predictive models for univariate and multivariate longitudinal response data
单变量和多变量纵向响应数据预测模型的新方法
- 批准号:
RGPIN-2020-04382 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
New methods for predictive models for univariate and multivariate longitudinal response data
单变量和多变量纵向响应数据预测模型的新方法
- 批准号:
RGPIN-2020-04382 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Methods for predictive models with longitudinal data
纵向数据预测模型的方法
- 批准号:
RGPIN-2019-04296 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Methods for analyzing nonstandard longitudinal datasets
分析非标准纵向数据集的方法
- 批准号:
327093-2009 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Algorithms for Analyzing Faulty Data Using Domain Information
EAGER:使用域信息分析错误数据的算法
- 批准号:
2414736 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
IUSE: Conservation Principles, Illustrated: Analyzing the Impact of Informal Visual Learning Tools on Educational Engineering Through Comics
IUSE:保护原则,图解:通过漫画分析非正式视觉学习工具对教育工程的影响
- 批准号:
2235827 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
CAREER: Scalable Software Infrastructure for Analyzing Complex Networks
职业:用于分析复杂网络的可扩展软件基础设施
- 批准号:
2339607 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
CRII: SHF: An Automated and User-centered Framework for Reproducing System-level Concurrency Bugs by Analyzing Bug Reports
CRII:SHF:通过分析错误报告来重现系统级并发错误的自动化且以用户为中心的框架
- 批准号:
2348277 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327892 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
- 批准号:
2327893 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Analyzing and Categorizing Manga and Children's Books for Extensive Reading in German
对德语漫画和儿童读物进行分析和分类以供泛读
- 批准号:
24K04027 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SaTC: CORE: Medium: Hardware Security Insights: Analyzing Hardware Designs to Understand and Assess Security Weaknesses and Vulnerabilities
协作研究:SaTC:核心:中:硬件安全见解:分析硬件设计以了解和评估安全弱点和漏洞
- 批准号:
2247755 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Analyzing the mechanism of the effects of Fusobacterium cooperated with cancer-associated fibroblasts on gastrointestinal cancers
梭杆菌协同癌相关成纤维细胞对胃肠道肿瘤的作用机制分析
- 批准号:
23K15435 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analyzing the role of cAMP and STAT3 signaling in cartilage homeostasis and osteoarthritis development
分析 cAMP 和 STAT3 信号在软骨稳态和骨关节炎发展中的作用
- 批准号:
10822167 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别: