New methods for predictive models for univariate and multivariate longitudinal response data
单变量和多变量纵向响应数据预测模型的新方法
基本信息
- 批准号:RGPIN-2020-04382
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accurate prediction of future outcomes is a common goal in many areas of science (e.g., climate, biology, medical, etc.). The goal in my research program is to develop new methods for predicting not simply binary events but instead trajectories of longitudinal outcomes, including for problems where there is more than one such outcome (i.e., multivariate longitudinal responses). These efforts will be for problems containing univariate or multivariate longitudinal responses which may be collected either sparsely or intensively, and, in the multivariate case, possibly asynchronously. Our 1st objective is to develop flexible predictive models for univariate longitudinal responses, where the basis of evaluation is improving the accuracy of predicting single response trajectories at the individual level. This is an area that has been studied using dynamical modeling, where the trajectory predictions are updated as more data over time are collected. However, there are problems for which early predictions are necessary (and there is not the luxury of waiting to continue to update predictions dynamically); we will focus on this setting here. Examples of such scenarios include potential urgent situations, such as a river possibly flooding or a heat wave impending. To help improve these early predictions of longitudinal trajectories, I propose incorporating the concept of similarity. This approach uses characteristics of former scenarios (e.g., temperature trajectories in similar climates in the past) to help inform what might happen in a given new setting, instead of considering all possible historical scenarios; essentially, a subset of strategically chosen former scenarios is used, and decisions need to be made on how to both identify and weight suitably similar scenarios to improve predictive accuracy. Part of this objective will continue with the similarity approach investigated in the more complex problem of predicting multivariate longitudinal response trajectories. For the 2nd objective, an entirely distinct context for predicting multivariate longitudinal response trajectories that are assumed driven by latent process(es) will be considered, where we will develop a hidden Markov modeling (HMM) approach; this work will build from previous work with a former trainee in modeling multivariate longitudinal data with mixed HMM's. To accomplish both objectives, we will operate under the Bayesian paradigm, which allows for a direct approach to statistical inference via predictive densities, while overcoming some difficult computational challenges, particularly for the mixed HMM approach. This research program comprises novel contributions in predictive modeling that are relevant to various disciplines, including in statistics and other areas of science (e.g., climate, biology) and could be applied in some practical urgent settings. Hence, the methods that my trainees and I will produce should be valuable for researchers in Canada and beyond.
准确预测未来结果是许多科学领域的共同目标(例如,气候、生物学、医学等)。我的研究计划的目标是开发新的方法来预测不仅仅是二元事件,而是纵向结果的轨迹,包括有不止一个这样的结果的问题(即,多变量纵向响应)。这些努力将包含单变量或多变量的纵向响应,可以收集稀疏或密集的问题,并在多变量的情况下,可能异步。我们的第一个目标是为单变量纵向响应开发灵活的预测模型,其中评估的基础是提高在个体水平上预测单响应轨迹的准确性。这是一个已经使用动态建模进行研究的领域,其中随着时间的推移收集更多的数据,轨迹预测会更新。然而,对于某些问题,早期预测是必要的(并且没有等待继续动态更新预测的奢侈);我们将在这里关注此设置。这种情况的例子包括潜在的紧急情况,如河流可能洪水或热浪即将到来。为了帮助改善这些早期预测的纵向轨迹,我建议纳入相似性的概念。这种方法使用以前场景的特征(例如,过去类似气候中的温度轨迹),以帮助告知在给定的新环境中可能发生的情况,而不是考虑所有可能的历史情景;基本上,使用了战略选择的先前情景的子集,并且需要就如何识别和适当加权类似情景以提高预测准确性做出决定。这一目标的一部分将继续与相似性的方法,在更复杂的问题预测多变量纵向响应轨迹。对于第二个目标,一个完全不同的背景下预测多变量纵向响应轨迹,假设驱动的潜在过程(ES)将被考虑,在那里我们将开发一个隐马尔可夫模型(HMM)的方法;这项工作将建立从以前的工作与前学员在建模多变量纵向数据与混合HMM的。为了实现这两个目标,我们将在贝叶斯范式下操作,该范式允许通过预测密度直接进行统计推断,同时克服一些困难的计算挑战,特别是对于混合HMM方法。该研究计划包括与各个学科相关的预测建模方面的新颖贡献,包括统计学和其他科学领域(例如,气候,生物学),并可以应用于一些实际的紧急情况。因此,我的学员和我将产生的方法应该是有价值的研究人员在加拿大和超越。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dubin, Joel其他文献
Dubin, Joel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dubin, Joel', 18)}}的其他基金
New methods for predictive models for univariate and multivariate longitudinal response data
单变量和多变量纵向响应数据预测模型的新方法
- 批准号:
RGPIN-2020-04382 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
New methods for predictive models for univariate and multivariate longitudinal response data
单变量和多变量纵向响应数据预测模型的新方法
- 批准号:
RGPIN-2020-04382 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Methods for predictive models with longitudinal data
纵向数据预测模型的方法
- 批准号:
RGPIN-2019-04296 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Extending Methodology for Analyzing Multivariate Longitudinal Data
扩展多元纵向数据分析方法
- 批准号:
RGPIN-2014-05911 - 财政年份:2014
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Methods for analyzing nonstandard longitudinal datasets
分析非标准纵向数据集的方法
- 批准号:
327093-2009 - 财政年份:2013
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Methods for analyzing nonstandard longitudinal datasets
分析非标准纵向数据集的方法
- 批准号:
327093-2009 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New psychoactive substance exposure among NYC nightclub and festival attendees
纽约夜总会和节日参加者接触新的精神活性物质
- 批准号:
10734617 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Combining Brain Connectivity and Excitability to Plan Epilepsy Surgery in Children: A New Approach to Augment Presurgical Intracranial Electroencephalography
结合大脑连接性和兴奋性来规划儿童癫痫手术:增强术前颅内脑电图的新方法
- 批准号:
10592653 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Predictive drivers of new onset, relapse, and progression of human autoimmunity in skin
人类皮肤自身免疫新发、复发和进展的预测驱动因素
- 批准号:
10658149 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Visualizing and predicting new and late HIV diagnosis in South Carolina: A Big Data approach
可视化和预测南卡罗来纳州新的和晚期的艾滋病毒诊断:大数据方法
- 批准号:
10815140 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Wastewater Sampling: A New Tool to Accelerate Ending the HIV Epidemic
废水采样:加速结束艾滋病毒流行的新工具
- 批准号:
10762555 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Discovery of New DNA Methylation Biomarkers for Predicting the Malignant Outcome of Low-Grade Oral Dysplasia
发现新的 DNA 甲基化生物标志物,用于预测低度口腔发育不良的恶性结果
- 批准号:
10641351 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
Computational Models for New Developments in Radical Chemistry
自由基化学新发展的计算模型
- 批准号:
10720509 - 财政年份:2023
- 资助金额:
$ 1.53万 - 项目类别:
A new hybrid modeling framework combining biophysics and deep learning to predict and optimize peripheral neuromodulation outcomes in lower urinary tract disease
一种新的混合建模框架,结合生物物理学和深度学习来预测和优化下尿路疾病的周围神经调节结果
- 批准号:
10705188 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
New Technology for High-Resolution Antibody Profiling for SARS-CoV-2
SARS-CoV-2 高分辨率抗体分析新技术
- 批准号:
10481680 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Weather extremes, natural disasters, and health outcomes among vulnerable older adults: New improvements on exposure assessment, disparity identification, and risk communication strategies
极端天气、自然灾害和弱势老年人的健康结果:暴露评估、差异识别和风险沟通策略的新改进
- 批准号:
10368551 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别: