Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
基本信息
- 批准号:341836-2012
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One important aspect of classical and celestial mechanics is the study of N-body problems. The most classical of the N-body problems is the Newtonian N-body problem, namely the analysis of the motion of N point particles in a setting where the dynamics are dictated by Newton's gravitational law. The study of N-body problems now includes just about any dynamical system that remotely resembles the Newtonian N-body problem. The most relevant for this proposal, besides the Newtonian N-body problem, include the full-body problems, the N-body problem on constant curvature spaces and the N-vortex problem. The vortex problem can be viewed as a N-body problem since, in an ideal fluid, one can study how vortices (i.e. points in a fluid where the fluid is spinning) interact without reference to the background fluid. Of particular interest in the planar Newtonian N-body problem and in the planar N-vortex problem are solutions that appear fixed when viewed in a uniformly rotating frame. Such solutions are called relative equilibria and the special configurations that are allowed in such motions are called relative equilibria configurations. I am interested in studying properties of relative equilibria and the configurations they define. The study of such configurations is important because they play a major role in understanding N-body behavior: they characterize the dynamical behavior of collisions and expansions and play a key role in the topology of the integral manifolds of the N-body problem. Another class of problems that I would like to study are the Full-body problems. Full body problems are concerned with the dynamical interaction of two or more distributed bodies. This is a fascinating class of problems that has many open questions and touches on numerous important issues in science and engineering, as for example binary asteroids, the dynamics of the Earth-Moon system, reaction and ionization of molecules, and stability and control of underwater vehicles. Additionally, I am interested in analyzing several aspects of the N-body problem on spaces of constant curvature. Some of the mathematical phenomena discovered in this area are so new and surprising that they need to be better understood.
经典力学和天体力学的一个重要方面是研究n体问题。最经典的N体问题是牛顿N体问题,即在动力学由牛顿引力定律决定的情况下分析N点粒子的运动。对n体问题的研究现在包括了几乎任何与牛顿n体问题稍有相似的动力系统。与此建议最相关的,除了牛顿的n体问题,还包括全身问题、常曲率空间上的n体问题和n涡问题。涡旋问题可以看作是一个n体问题,因为在理想流体中,人们可以研究涡旋(即流体中旋转的点)如何相互作用,而无需参考背景流体。在平面牛顿n -体问题和平面n -涡问题中,特别有趣的是,当在均匀旋转的框架中观察时,解是固定的。这样的解被称为相对平衡,在这种运动中允许的特殊构型被称为相对平衡构型。我对研究相对平衡的性质和它们所定义的构型很感兴趣。这种构型的研究很重要,因为它们在理解n体行为方面起着重要作用:它们表征了碰撞和膨胀的动力学行为,并在n体问题的积分流形的拓扑结构中起着关键作用。我想研究的另一类问题是全身问题。全身问题涉及两个或多个分布体的动力学相互作用。这是一类引人入胜的问题,有许多悬而未决的问题,涉及科学和工程中的许多重要问题,例如双星小行星,地月系统的动力学,分子的反应和电离,以及水下航行器的稳定性和控制。此外,我对分析常曲率空间上n体问题的几个方面很感兴趣。在这一领域发现的一些数学现象是如此新颖和令人惊讶,需要更好地理解它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Santoprete, Manuele其他文献
Global stability in a mathematical model of de-radicalization
- DOI:
10.1016/j.physa.2018.06.027 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:3.3
- 作者:
Santoprete, Manuele;Xu, Fei - 通讯作者:
Xu, Fei
A BARE-BONES MATHEMATICAL MODEL OF RADICALIZATION
- DOI:
10.3934/jdg.2018016 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:0.9
- 作者:
McCluskey, C. Connell;Santoprete, Manuele - 通讯作者:
Santoprete, Manuele
Countering violent extremism: A mathematical model
- DOI:
10.1016/j.amc.2019.04.054 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:4
- 作者:
Santoprete, Manuele - 通讯作者:
Santoprete, Manuele
Regularization of the Kepler Problem on the Three-sphere
- DOI:
10.4153/cjm-2012-039-9 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:0.7
- 作者:
Hu, Shengda;Santoprete, Manuele - 通讯作者:
Santoprete, Manuele
Seven-body central configurations: a family of central configurations in the spatial seven-body problem
- DOI:
10.1007/s10569-007-9102-9 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:1.6
- 作者:
Hampton, Marshall;Santoprete, Manuele - 通讯作者:
Santoprete, Manuele
Santoprete, Manuele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Santoprete, Manuele', 18)}}的其他基金
Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
- 批准号:
341836-2012 - 财政年份:2018
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
- 批准号:
341836-2012 - 财政年份:2015
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
- 批准号:
341836-2012 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
- 批准号:
341836-2012 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and numerical methods in celestial mechanics
天体力学中的数学和数值方法
- 批准号:
341836-2007 - 财政年份:2011
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and numerical methods in celestial mechanics
天体力学中的数学和数值方法
- 批准号:
341836-2007 - 财政年份:2010
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and numerical methods in celestial mechanics
天体力学中的数学和数值方法
- 批准号:
341836-2007 - 财政年份:2009
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and numerical methods in celestial mechanics
天体力学中的数学和数值方法
- 批准号:
341836-2007 - 财政年份:2008
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Mathematical and numerical methods in celestial mechanics
天体力学中的数学和数值方法
- 批准号:
341836-2007 - 财政年份:2007
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Frameworks: Interoperable High-Performance Classical, Machine Learning and Quantum Free Energy Methods in AMBER
合作研究:框架:AMBER 中可互操作的高性能经典、机器学习和量子自由能方法
- 批准号:
2209718 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Interoperable High-Performance Classical, Machine Learning and Quantum Free Energy Methods in AMBER
合作研究:框架:AMBER 中可互操作的高性能经典、机器学习和量子自由能方法
- 批准号:
2209717 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Molecules in Classical and Quantized Fields: Developing Time-dependent Density Functional and Exact Factorization Methods for Electrons, Ions, and Photons
经典和量子化领域中的分子:开发电子、离子和光子的时间相关密度泛函和精确分解方法
- 批准号:
2154829 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Multibody quantum chaos in SYK and SYK-like models using semi-classical methods
使用半经典方法的 SYK 和类 SYK 模型中的多体量子混沌
- 批准号:
2444195 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Studentship
Categorical Methods for Classical, Equivariant, and Motivic Homotopy Theory
经典、等变和动机同伦理论的分类方法
- 批准号:
1903429 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
Computer methods for classical problems in continuum theory
连续统理论经典问题的计算机方法
- 批准号:
539176-2019 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
University Undergraduate Student Research Awards
Non-convex Variational Image Processing: Boosting Classical Methods with Machine Learning
非凸变分图像处理:通过机器学习增强经典方法
- 批准号:
1912866 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Standard Grant
The applications of Machine Learning methods to classical and quantum problems in non-equilibrium
机器学习方法在非平衡经典和量子问题中的应用
- 批准号:
2275705 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Studentship
Classical Methods in Motivic Homotopy Theory
动机同伦理论中的经典方法
- 批准号:
1906072 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Continuing Grant