Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
基本信息
- 批准号:7679-2010
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let G be a group, i.e. G is a set with an associative operation such that each element has an inverse. For example, G may be taken to be the set of numbers, positive or negative, with addition, or the set of orthogonal transformations i.e. a linear transformation followed by translation (the affine group). My research in the next few years will consist of (a) the study of geometric, algebraic and topological properties on Banach algebras associated for G (e.g. group algebra, measure algebra and the Fourier Stieltjes algebra B(G) (b) the study of dual Banach algebras of the corresponding non-commutative function space in the von Neumann algebra VN(G) generated by the left regular representation of G (c) the (non-associative) Jordan structure in VN(G) for the fixed point set of a function in B(G).
设G是群,即G是一个具有结合运算的集合,使得每个元素都有一个逆。例如,G可以被认为是正数或负数加上加法的集合,或者是正交变换的集合,即,线性变换后跟平移(仿射群)。在接下来的几年里,我的研究将包括:(A)研究与G相关的Banach代数(例如群代数、测度代数和傅立叶Stieltjes代数B(G))上的几何、代数和拓扑性质(B)研究由G(C)的左正则表示生成的von Neumann代数VN(G)中对应的非交换函数空间的对偶Banach代数的对偶Banach代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lau, AnthonyToMing其他文献
Lau, AnthonyToMing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lau, AnthonyToMing', 18)}}的其他基金
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
- 批准号:
RGPIN-2015-05520 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
- 批准号:
RGPIN-2015-05520 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
- 批准号:
RGPIN-2015-05520 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
- 批准号:
RGPIN-2015-05520 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
- 批准号:
RGPIN-2015-05520 - 财政年份:2015
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
- 批准号:
7679-2010 - 财政年份:2013
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
- 批准号:
7679-2005 - 财政年份:2005
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, associated to locally compact groups
Banach 代数,与局部紧群相关
- 批准号:
7679-2001 - 财政年份:2004
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, associated to locally compact groups
Banach 代数,与局部紧群相关
- 批准号:
7679-2001 - 财政年份:2003
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, associated to locally compact groups
Banach 代数,与局部紧群相关
- 批准号:
7679-2001 - 财政年份:2002
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Topological group actions and associated Banach algebras
拓扑群作用和相关的 Banach 代数
- 批准号:
RGPIN-2020-04214 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Topological group actions and associated Banach algebras
拓扑群作用和相关的 Banach 代数
- 批准号:
RGPIN-2020-04214 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Topological group actions and associated Banach algebras
拓扑群作用和相关的 Banach 代数
- 批准号:
RGPIN-2020-04214 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
- 批准号:
RGPIN-2015-05520 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
- 批准号:
RGPIN-2015-05520 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual