Banach algebras associated to locally compact groups

与局部紧群相关的巴拿赫代数

基本信息

  • 批准号:
    RGPIN-2015-05520
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Let G be a group, i.e. G is a set with an associative operation such that each element has an inverse. For example, G may be taken to be the set of numbers, positive or negative, with addition, or the set of orthogonal transformations i.e. a linear transformation followed by translation (the affine group). I will consider G equipped with a topology such that multiplication and inversion are continues. I will further assume that the topology is locally compact, that is there is basis for the neighborhood system for the identity of G consisting of compact set. My research in the next few years will consist of : (a) the study of geometric, algebraic and topological properties on Banach algebras associated for a G (e.g. group algebra, measure algebra and the Fourier Stieltjes algebra B(G); b) the study of dual Banach algebras of the corresponding non-commutative function space in the von Neumann algebra VN(G) generated by the left regular representation of G; (c) the (non-associative) Jordan structure in VN(G) for the fixed point set of a function in B(G) or power bounded elements in B(G). I will also study Banach algebras which are preduals of von Neumann algebras which will include preduals of Hopf von Neumann algebras, in particular quantum group algebras. More specifically, I will continue to study some important geometric properties of G such as:***(A) The Hahn-Banach separation property for closed subgroups by continuous positive definite functions on G.***(B) The Hahn-Banach extension property for a continuous positive definite functions on a closed subgroup to the full group.****(C) The invariant complementation problem: Is every weak*-closed invariant subspace of the group von Neumann algebra VN(G) of a locally compact group G invariantly complemented? This is known to be the case for locally compact groups with a basis of neighborhoods of the identity consisting of compact sets which are invariant under inner automorphisms, or when G is amenable. ******I will also continue to study (a) the measure algebra of the Stone-Cech compactification of the natural number (or discrete semi-group) using deep combinatorial and topological properties of the compactification; (b) the relation of amenability, weak convergence of ergodic sequences and fixed point set for semi-group of non-expansive mappings. More specifically, I intend to continue to study the second dual of Beurling algebras and the measure algebra of the Stone-Cech compactification of the semigroup of positive integer or more generally a cancellative semigroup using the deep structure, combinatorial and topological properties of the compact right topological semigroup of the compactification of the semigroup. I will also study weak or weak* fixed point properties on weak* closed subspaces of B(G) for coefficient spaces associated to a continuous representation and quantum group algebras which are dependent on their operator space structures.********
设G是一个群,即G是一个具有结合运算的集合,使得每个元素都有一个逆。 例如,G可以被认为是一组数字,正的或负的,加上,或一组正交变换,即一个线性变换后的平移(仿射群)。 我将考虑G配备一个拓扑,使得乘法和逆是连续的。进一步假设拓扑是局部紧的,即G的单位元的邻域系存在由紧集构成的基。我在今后几年的研究工作主要包括:(a)研究G(例如群代数、测度代数和Fourier Stieltjes代数B(G)):B)研究由G的左正则表示生成的von Neumann代数VN(G)中相应的非交换函数空间的对偶Banach代数;(c)B(G)中函数的不动点集或B(G)中幂有界元的VN(G)中的(非结合)Jordan结构.我还将研究Banach代数,它们是冯诺伊曼代数的预测,其中包括霍普夫冯诺伊曼代数的预测,特别是量子群代数。更具体地说,我将继续研究G的一些重要几何性质,如:*(A)G上连续正定函数闭子群的Hahn-Banach分离性 * (B)闭子群上连续正定函数到全群的Hahn-Banach扩张性质。(C)不变补问题:局部紧群G的群von Neumann代数VN(G)的每个弱 *-闭不变子空间是否不变补? 这是已知的情况下,局部紧群的基础上的邻里的身份组成的紧集是不变的内部自同构,或当G是顺从的。* 我还将继续研究(a)自然数(或离散半群)的Stone-Cech紧化的测度代数,利用紧化的深层组合和拓扑性质;(B)非扩张映射半群的顺从性、遍历序列的弱收敛性与不动点集的关系。更具体地说,我打算继续研究Beurling代数的第二对偶和Stone-Cech紧化的正整数半群或更一般的可消半群的测度代数,利用半群紧化的紧右拓扑半群的深层结构,组合和拓扑性质。我还将研究B(G)的弱 * 闭子空间上的弱或弱 * 不动点性质,其中系数空间与连续表示和量子群代数相关,量子群代数依赖于它们的算子空间结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lau, AnthonyToMing其他文献

Lau, AnthonyToMing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lau, AnthonyToMing', 18)}}的其他基金

Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
  • 批准号:
    RGPIN-2015-05520
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
  • 批准号:
    RGPIN-2015-05520
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
  • 批准号:
    RGPIN-2015-05520
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
  • 批准号:
    RGPIN-2015-05520
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
  • 批准号:
    7679-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
  • 批准号:
    7679-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
  • 批准号:
    7679-2005
  • 财政年份:
    2005
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras, associated to locally compact groups
Banach 代数,与局部紧群相关
  • 批准号:
    7679-2001
  • 财政年份:
    2004
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras, associated to locally compact groups
Banach 代数,与局部紧群相关
  • 批准号:
    7679-2001
  • 财政年份:
    2003
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras, associated to locally compact groups
Banach 代数,与局部紧群相关
  • 批准号:
    7679-2001
  • 财政年份:
    2002
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Topological group actions and associated Banach algebras
拓扑群作用和相关的 Banach 代数
  • 批准号:
    RGPIN-2020-04214
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Topological group actions and associated Banach algebras
拓扑群作用和相关的 Banach 代数
  • 批准号:
    RGPIN-2020-04214
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Topological group actions and associated Banach algebras
拓扑群作用和相关的 Banach 代数
  • 批准号:
    RGPIN-2020-04214
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
  • 批准号:
    RGPIN-2015-05520
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
  • 批准号:
    RGPIN-2016-05987
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras associated to locally compact groups
与局部紧群相关的巴拿赫代数
  • 批准号:
    RGPIN-2015-05520
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了