Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
基本信息
- 批准号:9216-2010
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a sequence of previous projects and publications, a simple and powerful method known as "finite Markov chain imbedding" was developed to compute the exact probabilities of waiting times and occurrences for the number of words, patterns, or runs in a sequence of symbols. The technique has had a high impact in both statistics and applied probability and has been used successfully in many areas, such as reliability theory, quality control, DNA sequence analysis, psychology, astronomy, statistics, and biology. This five-year research proposal deals with further refinements to this method, and contains four parts: (i) developing a better approximation for the distribution of complex words, runs and patterns, (ii) extending Markov chain imbedding to study the boundary crossing probability for Brownian motion and its related processes, (iii) using the method to examine the distribution of clusters in DNA sequences and hospital ER wait times(a hot issue in Canada), and (iv) applying the results from (ii) to study bankruptcy and financial distress among large companies to avoid the recession as current one.
在一系列以前的项目和出版物中,开发了一种简单而强大的方法,即“有限马尔可夫链嵌入”,以计算等待时间的确切概率和单词,模式数量或以一系列符号的方式运行的概率。 该技术在统计和应用概率上都产生了很大的影响,并且在许多领域都成功使用了,例如可靠性理论,质量控制,DNA序列分析,心理学,天文学,统计和生物学。 This five-year research proposal deals with further refinements to this method, and contains four parts: (i) developing a better approximation for the distribution of complex words, runs and patterns, (ii) extending Markov chain imbedding to study the boundary crossing probability for Brownian motion and its related processes, (iii) using the method to examine the distribution of clusters in DNA sequences and hospital ER wait times(a hot issue in Canada), and (iv) applying the results from (ii)研究大公司的破产和财务困境,以避免经济衰退为当前的衰退。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fu, James其他文献
Fu, James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fu, James', 18)}}的其他基金
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
- 批准号:
RGPIN-2015-06698 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
- 批准号:
RGPIN-2015-06698 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
- 批准号:
RGPIN-2015-06698 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
- 批准号:
RGPIN-2015-06698 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
- 批准号:
RGPIN-2015-06698 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
- 批准号:
RGPIN-2015-06698 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
- 批准号:
9216-2010 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
- 批准号:
9216-2010 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
- 批准号:
9216-2010 - 财政年份:2011
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
- 批准号:
9216-2010 - 财政年份:2010
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
高速列车多场景下运行模型最优辨识及渐近全驱协同控制理论研究
- 批准号:62373311
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多场景矿山综合能源系统运行的自我进化优化理论与应用
- 批准号:62303465
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电力-碳排放双重市场环境下的新型电力系统低碳运行调度理论研究
- 批准号:72331009
- 批准年份:2023
- 资助金额:168 万元
- 项目类别:重点项目
基于非渐近估计的复杂微电网故障诊断与运行稳定性控制理论研究
- 批准号:62303133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全绕组高电负荷高功率密度无刷电励磁电机综合设计理论与稳定运行机制研究
- 批准号:52377038
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
- 批准号:
9216-2010 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
- 批准号:
9216-2010 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
- 批准号:
9216-2010 - 财政年份:2011
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
- 批准号:
9216-2010 - 财政年份:2010
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Distribution theory of runs and patterns
游程和模式的分布理论
- 批准号:
9216-2005 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual