Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics

有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用

基本信息

  • 批准号:
    RGPIN-2015-06698
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The finite Markov chain imbedding (FMCI) technique is an unconventional, simple, flexible and computation efficient probabilistic tool to evaluate probabilities and distributions of runs and patterns of interest. It has been successfully applied for solving complex and unsolved problems in various areas such as health science, genomic analysis, reliability, quality control, physics, statistics, applied probability, computer science, and discrete mathematics. In this proposal, the FMCI technique is going to be extended into four very important applied areas, (i) boundary crossing probability (BCP) for high dimensional Brownian motion, (ii) matching probability of two DNA sequences with allowing at most d mutations, (iii) distributions of patterns to avoid in [S]-specified random permutation and (iv) distributions of bumps of genome-wide association studies for comparing gene expressions between normal and disease chromosomes. The following are expected results:  A. Short term expected results (next five years) (i)   The first part of the proposal will establish an analytical and efficient numerical method for approximating the boundary crossing probabilities for non-linear convex boundaries of d-dimensional Brownian motion. It will show the rate of convergence is O(1/n1/2) and independent of the dimensionality d. The results will be extended to related stochastic processes such as Ornstein-Uhlenbeck process and Brownian Bridge. (ii)  The statistic Ln(d), the length of the longest matching of two DNA sequences with allowing at most d mutations/insertions, is proposed as a measure for similarity. The exact distributions of Ln(d) will be derived and show that the distribution of Ln(d) can be expressed in terms of the distribution of scan statistics. (iii)  The exact distribution of patterns to avoid in [S]-specified random permutation will be obtained. To achieve the goal, sampling one-by-one from an urn with [s]-specified symbols without replacement to forming random permutation. The results will cover many classical results for example the conditional runs tests and conditional scan statistics. (iv) "Bump hunting" is vital important in genome-wide association studies between normal and disease chromosomes. In the last part of the proposal, the bump is modeled by its two components, the length and size of the bump and the joint and marginal distributions for the number and length of bumps will be derived. B. Long term goal (i)  The long term goal is to use FMCI technique to solve as many complex and unsolved problems, conjectures and newly arise practical problems associated with distributions of runs and patterns in applied probability and statistics, especially the continuous case. For example boundary crossing probabilities for jump processes, diffusion processes and Markov processes and matching probabilities among a set of DNA sequences allowing at most d mutations/deletions.
有限马尔可夫链嵌入(FMCI)技术是一种非常规的、简单、灵活和计算高效的概率工具,用于评估游程和感兴趣模式的概率和分布。它已经成功地应用于解决健康科学、基因组分析、可靠性、质量控制、物理学、统计学、应用概率、计算机科学和离散数学等领域的复杂和悬而未决的问题。在这个建议中,FMCI技术将被扩展到四个非常重要的应用领域,(I)高维布朗运动的边界跨越概率,(Ii)最多允许d个突变的两个dna序列的匹配概率,(Iii)在[S]指定的随机排列中避免的模式分布,以及(Iv)用于比较正常和疾病染色体之间基因表达的全基因组关联研究的凸点分布。以下为预期结果: A.短期预期成果(未来五年) (I)建议的第一部分将建立一种分析和有效的数值方法来逼近d维布朗运动的非线性凸边界的越界概率。所得结果将推广到Ornstein-Uhlenbeck过程和布朗桥过程等相关随机过程。 (Ii)在统计量Ln(D)中,提出了最多允许d个突变/插入的两个DNA序列的最长匹配长度作为相似性的度量。将导出Ln(D)的精确分布,并表明Ln(D)的分布可以用扫描统计的分布来表示。 (Iii)将获得在[S]指定的随机排列中要避免的图案的准确分布。为了达到这一目的,从带有[S]指定符号的骨灰盒中逐一采样,而不进行替换以形成随机排列。结果将涵盖许多经典结果,例如条件运行测试和条件扫描统计。 (4)在正常染色体和疾病染色体之间的全基因组关联研究中,“寻宝”是至关重要的。在提案的最后部分,凸起由它的两个组成部分来模拟,凸起的长度和大小以及凸起数量和长度的联合和边缘分布将被推导出来。 B.长期目标 (I)长期目标是使用FMCI技术解决应用概率和统计中与游程分布和模式有关的许多复杂和悬而未决的问题、猜想和新出现的实际问题,特别是连续情况。例如,跳跃过程、扩散过程和马尔可夫过程的边界跨越概率以及允许最多d个突变/缺失的一组DNA序列之间的匹配概率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fu, James其他文献

Fu, James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fu, James', 18)}}的其他基金

Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

多源网络攻击下Markov跳变信息物理系 统的安全性分析与控制
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于非周期间歇控制的Markov切换随机时滞系统的镇定及其应用研究
  • 批准号:
    QN25A010026
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
DoS攻击下Semi-Markov跳变拓扑结构网络化协同运动系统预测控制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于真实世界数据探讨针刺对脑卒中后肩痛患者康复结局的影响及成本-效用Markov分析
  • 批准号:
    2024Y9524
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于 Hidden-Markov 理论的孤岛微电网负荷 频率鲁棒控制研究
  • 批准号:
    Q24F030019
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
模型未知下Markov跳变系统事件触发滑模控制研究
  • 批准号:
    62373002
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
隐semi-Markov过程驱动的双时间尺度时滞系统有限时间控制
  • 批准号:
    62303016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于异步Markov切换的网络化区间状态估计及其控制
  • 批准号:
    62373220
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
带有Markov链和随机脉冲的离散时间随机时滞系统的稳定性、控制及应用研究
  • 批准号:
    12302034
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
  • 批准号:
    2237322
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Optimization of Markov Chain Monte Carlo Schemes with Spectral Gap Estimation
具有谱间隙估计的马尔可夫链蒙特卡罗方案优化
  • 批准号:
    2311307
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
  • 批准号:
    535321-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
  • 批准号:
    2210849
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Markov Chain Convergence Rates in High Dimensions
高维马尔可夫链收敛率
  • 批准号:
    569204-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Markov chain theory and its applications
马尔可夫链理论及其应用
  • 批准号:
    RGPIN-2021-03775
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Markov chain Monte Carlo algorithms and locally informed proposal distributions
马尔可夫链蒙特卡罗算法和本地通知的提案分布
  • 批准号:
    RGPIN-2019-04488
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Markov chain Monte Carlo methods for physically based lighting simulations
用于基于物理的照明模拟的高级马尔可夫链蒙特卡罗方法
  • 批准号:
    546767-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了