Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics

有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用

基本信息

  • 批准号:
    RGPIN-2015-06698
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The finite Markov chain imbedding (FMCI) technique is an unconventional, simple, flexible and computation efficient probabilistic tool to evaluate probabilities and distributions of runs and patterns of interest. It has been successfully applied for solving complex and unsolved problems in various areas such as health science, genomic analysis, reliability, quality control, physics, statistics, applied probability, computer science, and discrete mathematics. In this proposal, the FMCI technique is going to be extended into four very important applied areas, (i) boundary crossing probability (BCP) for high dimensional Brownian motion, (ii) matching probability of two DNA sequences with allowing at most d mutations, (iii) distributions of patterns to avoid in [S]-specified random permutation and (iv) distributions of bumps of genome-wide association studies for comparing gene expressions between normal and disease chromosomes. The following are expected results:
有限的马尔可夫链嵌入式(FMCI)技术是一种非常规,简单,灵活和计算有效的概率工具,可评估运行和感兴趣模式的概率和分布。它已成功地用于解决各个领域的复杂和未解决的问题,例如健康科学,基因组分析,可靠性,质量控制,物理,统计,应用概率,计算机科学和离散数学。 In this proposal, the FMCI technique is going to be extended into four very important applied areas, (i) boundary crossing probability (BCP) for high dimensional Brownian motion, (ii) matching probability of two DNA sequences with allowing at most d mutations, (iii) distributions of patterns to avoid in [S]-specified random permutation and (iv) distributions of bumps of genome-wide association studies for comparing gene expressions between正常和疾病染色体。预期的结果是:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fu, James其他文献

Fu, James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fu, James', 18)}}的其他基金

Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution theory of runs and patterns and its applications
游程和模式的分布理论及其应用
  • 批准号:
    9216-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于马尔可夫链的量子采样算法的研究
  • 批准号:
    62372444
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
带有Markov链和随机脉冲的离散时间随机时滞系统的稳定性、控制及应用研究
  • 批准号:
    12302034
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
高阶Markov链的张量低秩逼近模型及其在大规模随机游走中的应用
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于DEA和Markov链的动态不确定应急设施选址研究
  • 批准号:
    62141302
  • 批准年份:
    2021
  • 资助金额:
    12.00 万元
  • 项目类别:
    专项项目
高阶Markov链的张量低秩逼近模型及其在大规模随机游走中的应用
  • 批准号:
    12101136
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Development and application of the finite state Markov chain approximation method for control systems described by stochastic differential equations
随机微分方程控制系统有限状态马尔可夫链逼近方法的发展与应用
  • 批准号:
    20K11989
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Markov Chain Imbedding and Its Applications in Stochastic Processes, biological Sequences, and Discrete Mathematics
有限马尔可夫链嵌入及其在随机过程、生物序列和离散数学中的应用
  • 批准号:
    RGPIN-2015-06698
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了