"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"

“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”

基本信息

  • 批准号:
    261426-2012
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Considerable research efforts have been spent on risk management in financial decision domains. Its large economic significance makes risk management research one of the most challenging research topics. The short term objective of this proposed research is to integrate Data Envelopment Analysis (DEA), Partial Least Squares (PLS) and artificial intelligence approaches to improve the current risk management models. In the long run, the objective of the proposed research is to provide an innovative and unique approach to address key issues in applying DEA, PLS and artificial intelligence approaches to risk management. It aims at opening up new possibilities for risk management in financial decision domains. It is also the target of this research to provide financial organizations with a set of practical tools to enhance their risk management capabilities in critical business areas such as credit assessment, loan portfolio optimization and security management. The significance of this research can be summarized as below: Firstly, a general analytical framework for feature selection provides an objective way to evaluate the effectiveness of feature selection. Furthermore, recursive feature elimination strategy will be introduced to PLS-based feature selection method, which can significantly enhance the prediction process and produce models with very high prediction accuracy. Secondly, the proposed research will attempt to utilize PLS based feature selection to select the most relevant inputs and outputs for DEA models. This will overcome one of the major limitations of DEA method and open up many new possibilities for DEA applications. Thirdly, imbalanced data classification is a prevalent problem in reality. The nature of the problem lies in that one class dominates the data set against other classes, which tricks the classifiers to classify everything into the dominating class in sheer pursuit of accuracy. This research proposes to integrate re-sampling and ensemble learning for information fusion to address imbalanced data classification. In the end, the industrial customer analysis platform will bring significant benefits to the financial market, including institutions and regulators.
人们在财务决策领域的风险管理方面投入了大量的研究工作。其巨大的经济意义使得风险管理研究成为最具挑战性的研究课题之一。这项研究的短期目标是整合数据包络分析(DEA)、偏最小二乘法(PLS)和人工智能方法来改进当前的风险管理模型。从长远来看,本研究的目标是提供一种创新且独特的方法来解决应用 DEA、PLS 和人工智能方法进行风险管理的关键问题。它旨在为财务决策领域的风险管理开辟新的可能性。本研究的目标也是为金融机构提供一套实用的工具,以增强其在信用评估、贷款组合优化和安全管理等关键业务领域的风险管理能力。本研究的意义可以概括为:首先,特征选择的通用分析框架为评估特征选择的有效性提供了客观的方法。此外,基于PLS的特征选择方法将引入递归特征消除策略,这可以显着增强预测过程并产生具有非常高预测精度的模型。 其次,所提出的研究将尝试利用基于 PLS 的特征选择来为 DEA 模型选择最相关的输入和输出。这将克服 DEA 方法的主要局限性之一,并为 DEA 应用开辟许多新的可能性。第三,数据分类不平衡是现实中普遍存在的问题。问题的本质在于,一个类在数据集中相对于其他类占主导地位,这会欺骗分类器将所有内容分类到主导类中,以纯粹追求准确性。本研究提出将重采样和集成学习结合起来进行信息融合,以解决不平衡的数据分类问题。最终,行业客户分析平台将为金融市场,包括机构和监管机构带来显着的利益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang, Zijiang, Cynthia其他文献

Yang, Zijiang, Cynthia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang, Zijiang, Cynthia', 18)}}的其他基金

"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Building a novel interactive platform and recommendation system for creative learning
构建新颖的创意学习互动平台和推荐系统
  • 批准号:
    477713-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Engage Grants Program
Assessing and predicting health science projects and collaboration
评估和预测健康科学项目和合作
  • 批准号:
    470156-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Engage Grants Program
Mining and parsing information from e-commerce websites
电子商务网站信息的挖掘和解析
  • 批准号:
    461800-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Engage Grants Program
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Content recommendations in a live customer environment
实时客户环境中的内容推荐
  • 批准号:
    453511-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Engage Grants Program
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Use of Data Envelopment Analysis to Create Benchmarks for the transition from acute to inpatient care in stroke patients
使用数据包络分析为中风患者从急性护理过渡到住院护理创建基准
  • 批准号:
    428668
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Studentship Programs
Personalized preventive medicine using data envelopment analysis
使用数据包络分析的个性化预防医学
  • 批准号:
    17K09152
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Eco-Efficiency Analysis of Rice Production in Japan: Joint Application of Life Cycle Assessment and Data Envelopment Analysis
日本水稻生产的生态效率分析:生命周期评估和数据包络分析的联合应用
  • 批准号:
    17K07971
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Efficiency evaluation of regional core human resource development process by data envelopment analysis
基于数据包络分析的区域核心人力资源开发流程效率评价
  • 批准号:
    16K03632
  • 财政年份:
    2016
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of Bank Branch Growth Potential using Data Envelopment Analysis and Machine Learning Techniques applied to Big Data
使用应用于大数据的数据包络分析和机器学习技术评估银行分行的增长潜力
  • 批准号:
    443109-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
"Integrating Data Envelopment Analysis, Partial Least Squares and Artificial Intelligence Approaches for Risk Management in Financial Decision Domains"
“整合数据包络分析、偏最小二乘法和人工智能方法进行财务决策领域的风险管理”
  • 批准号:
    261426-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation of Bank Branch Growth Potential using Data Envelopment Analysis and Machine Learning Techniques applied to Big Data
使用应用于大数据的数据包络分析和机器学习技术评估银行分行的增长潜力
  • 批准号:
    443109-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Applying data envelopment analysis to preventive medicine: a novel method for constructing a personalized risk model
将数据包络分析应用于预防医学:构建个性化风险模型的新方法
  • 批准号:
    25560363
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了