Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
基本信息
- 批准号:312489-2011
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Shapes may be described by using the familiar geometric notions of length, area, volume, angle and curvature. Changing shapes may be described by Geometric Partial Differential Equations: stretching or bending, smoothing rough edges, or mapping one onto another.
可使用长度、面积、体积、角度和曲率等熟悉的几何概念来描述曲率。 改变形状可以用几何偏微分方程来描述:拉伸或弯曲,平滑粗糙的边缘,或将一个映射到另一个。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oberman, Adam其他文献
Deep relaxation: partial differential equations for optimizing deep neural networks
- DOI:
10.1007/s40687-018-0148-y - 发表时间:
2018-06-28 - 期刊:
- 影响因子:1.2
- 作者:
Chaudhari, Pratik;Oberman, Adam;Carlier, Guillaume - 通讯作者:
Carlier, Guillaume
ANISOTROPIC TOTAL VARIATION REGULARIZED L1 APPROXIMATION AND DENOISING/DEBLURRING OF 2D BAR CODES
- DOI:
10.3934/ipi.2011.5.591 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:1.3
- 作者:
Choksi, Rustum;van Gennip, Yves;Oberman, Adam - 通讯作者:
Oberman, Adam
NUMERICAL METHODS FOR MATCHING FOR TEAMS AND WASSERSTEIN BARYCENTERS
- DOI:
10.1051/m2an/2015033 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:0
- 作者:
Carlier, Guillaume;Oberman, Adam;Oudet, Edouard - 通讯作者:
Oudet, Edouard
A REGULARIZATION INTERPRETATION OF THE PROXIMAL POINT METHOD FOR WEAKLY CONVEX FUNCTIONS
- DOI:
10.3934/jdg.2020005 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:0.9
- 作者:
Hoheisel, Tim;Laborde, Maxime;Oberman, Adam - 通讯作者:
Oberman, Adam
Oberman, Adam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oberman, Adam', 18)}}的其他基金
Principled approaches to deep learning: generalization under distribution shift and predictive uncertainty
深度学习的原则方法:分布变化和预测不确定性下的泛化
- 批准号:
RGPIN-2022-03609 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
High Dimensional Data Reduction using approximate Convex Hulls
使用近似凸包进行高维数据缩减
- 批准号:
486596-2015 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Engage Grants Program
Numerical methods for geometric partial differential equations: applications to freeform deformations in animation and nonrigid medical image registration
几何偏微分方程的数值方法:在动画和非刚性医学图像配准中自由变形的应用
- 批准号:
312489-2011 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
- 批准号:
411943-2011 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Geometric Partial Differential Equations with Applications in Numerical Relativity
几何偏微分方程的数值方法及其在数值相对论中的应用
- 批准号:
2012857 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Geometric Numerical Integration Methods for Differential-Algebraic Equations and Their Application to Evolutionary Equations
微分代数方程的几何数值积分方法及其在演化方程中的应用
- 批准号:
19K23399 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Geometric PDE on Manifolds with Arbitrary Topology
任意拓扑流形上几何偏微分方程的数值方法
- 批准号:
1620366 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
- 批准号:
1522337 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant