Algebraic cycles on homogeneous varieties
同质簇上的代数循环
基本信息
- 批准号:385795-2010
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cohomological methods in mathematics were introduced and applied in the middle of the last century by Solomon Lefschetz to study complex algebraic varieties. During the next decade they were essentially developed by Andre Weil and Alexander Grothendieck leading to the proof of the famous Weil's Conjectures by Pierre Deligne. Since then cohomological methods have become a fundamental technique in mathematics which in many cases led to the resolution of classical algebraic and geometric problems. Among the major recent achievements in this direction one should mention: the oriented cohomology theory, the theory of algebraic cobordism by Levine-Morel and the theory of motives by Grothendieck, Manin and Voevodsky. Another central object of the modern mathematics is the notion of a (linear algebraic) group G acting on a variety or manifold X. The basic example is the group of linear transformations acting on a vector space. The geometry of G and X has been a subject of intensive investigations for almost a century, with important contributions by Armand Borel, Claude Chevalley, Michel Demazure, Jean-Pierre Serre, Jaques Tits, and others.
上个世纪中期,所罗门·莱夫谢茨引入并应用数学上的上同调方法来研究复代数簇。在接下来的十年里,它们基本上由安德烈·韦尔和亚历山大·格罗滕迪克发展,导致皮埃尔·德利涅证明了著名的韦尔猜想。从那时起,上同调方法已成为一个基本的技术在数学中,在许多情况下导致决议的经典代数和几何问题。在最近的主要成就在这个方向应该提到:面向上同调理论,理论的代数cobordism由莱文,莫雷尔和理论的动机Grothendieck,马宁和Voevodsky。现代数学的另一个中心目标是作用于簇或流形X的(线性代数)群G的概念。最基本的例子是作用在向量空间上的线性变换群。几何的G和X一直是一个主题的深入调查了近世纪,与重要贡献的阿曼德博雷尔,克劳德Chevalley,米歇尔Demazure,让皮埃尔塞尔,雅克山雀,和其他人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zaynullin, Kirill其他文献
Zaynullin, Kirill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zaynullin, Kirill', 18)}}的其他基金
Operations on equivariant oriented cohomology of homogeneous spaces
齐次空间的等变导向上同调的运算
- 批准号:
RGPIN-2022-03060 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic cycles on homogeneous varieties
同质簇上的代数循环
- 批准号:
385795-2010 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algebraic cycles on homogeneous varieties
同质簇上的代数循环
- 批准号:
396100-2010 - 财政年份:2012
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Understanding multiday cycles underpinning human physiology
了解支撑人体生理学的多日周期
- 批准号:
DP240102899 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Projects
Bloom and bust: seasonal cycles of phytoplankton and carbon flux
繁荣与萧条:浮游植物和碳通量的季节性周期
- 批准号:
2910180 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Studentship
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
CAREER: Understanding how Earth's coupled carbon and sulfur cycles evolved after the oxygenation of the atmosphere
职业:了解地球的耦合碳和硫循环在大气氧化后如何演变
- 批准号:
2339237 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Improving Functional Regeneration and Engraftment of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells by Brief Cycles of Transient Reprogramming
通过短暂的瞬时重编程周期改善人诱导多能干细胞来源的心肌细胞的功能再生和植入
- 批准号:
24K11267 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: P4Climate--Testing Hypotheses of Mesoamerican Hydroclimate over the Last Several Glacial Cycles
合作研究:P4Climate——检验最后几个冰川周期中美洲水气候的假设
- 批准号:
2303487 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant