Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
基本信息
- 批准号:RGPIN-2015-04469
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of linear algebraic groups is a well established area of modern mathematics. It started as an algebraic version of the massively successful and widely applied theory of Lie groups, pushed forward most notably by Chevalley and Borel. In the hands of Serre, Springer, Tits and many others, it developed into an important tool for understanding geometry (of homogeneous spaces and toric varieties), number theory (in the form of Galois cohomology) and representation theory (of groups and the associated algebras). In the last decades the theory of linear algebraic groups has witnessed a massive intrusion of the methods of algebraic topology. These new methods have led to breakthroughs on a number of classical problems in algebra, which are beyond the reach of earlier purely algebraic techniques. In the mid of 90's Voevodsky's use of techniques from homotopy and cobordism theory in the context of quadratic forms had resulted in the solution of the Milnor conjecture. Another striking example of this ongoing trend is the invention of an algebraic classifying space and equivariant cohomology by Eddidin-Graham and Totaro. Merging these results with a notion of an algebraic oriented cohomology introduced by Levine-Morel and Panin-Smirnov in 00's have lead to the creation of a family of new algebraic equivariant cohomology theories (e.g. equivariant cobordism and elliptic cohomology) which are actively studied nowadays in view of its rich connections to geometry.
The proposed project can be viewed as the next step toward this philosophy. Roughly speaking, it consists of two directions: first, is an 'algebraization program' for equivariant oriented cohomology (over an algebraically closed field); second, deals with its applications to the theory of torsors and twisted flag varieties (over an arbitrary field). Its goal is to match various cohomology rings of flag varieties and elements of classical interest in them (such as classes of Schubert varieties) with some algebraic and combinatorial objects. An essential part of the proposed investigations is the involvement of graduate and postdoctoral students. Some of the subtasks, for instance those related with computations in oriented cohomology, are expected to become the subjects of the proposed MSc and PhD-projects.
As an outcome we expect to obtain new results in the theory of algebraic groups and geometry of homogeneous spaces that will extend our knowledge in those areas of mathematics and will help advance Canada's fundamental science capabilities.
线性代数群理论是现代数学中一个很好的领域。它开始作为一个代数版本的大规模成功和广泛应用的理论李群,推动了最显着的Chevalley和Borel。在手中的塞尔,施普林格,山雀和许多其他人,它发展成为一个重要的工具,了解几何(齐性空间和环面品种),数论(在形式的伽罗瓦上同调)和表示理论(群和相关的代数)。在过去的几十年中,理论的线性代数群已经见证了一个大规模入侵的方法代数拓扑。这些新的方法导致了一些经典的代数问题上的突破,这是超越了早期的纯代数技术。在90年代中期Voevodsky的使用技术同伦和配边理论的背景下,二次形式导致了解决米尔诺猜想。这一趋势的另一个突出的例子是Eddidin-Graham和Totaro发明的代数分类空间和等变上同调。将这些结果与Levine-Morel和Panin-Smirnov在2000年引入的代数上同调的概念相结合,产生了一系列新的代数等变上同调理论(例如等变协边和椭圆上同调),这些理论由于与几何的丰富联系而受到积极研究。
拟议的项目可以被视为朝着这一理念迈出的下一步。粗略地说,它包括两个方向:第一,是一个'代数化程序'等变定向上同调(在代数闭域);第二,涉及其应用理论的torsors和扭曲的标志品种(在任意领域)。它的目标是匹配各种上同调环的标志品种和元素的经典利益,他们(如类舒伯特品种)与一些代数和组合的objects.A的一个重要组成部分,拟议的调查是研究生和博士后的参与。一些子任务,例如那些与计算定向上同调,预计将成为拟议的硕士和博士项目的主题。
作为一个结果,我们希望获得新的成果,在理论的代数群和几何的齐次空间,这将扩大我们的知识在这些领域的数学,并将有助于推进加拿大的基础科学能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zaynullin, Kirill其他文献
Zaynullin, Kirill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zaynullin, Kirill', 18)}}的其他基金
Operations on equivariant oriented cohomology of homogeneous spaces
齐次空间的等变导向上同调的运算
- 批准号:
RGPIN-2022-03060 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Algebraic cycles on homogeneous varieties
同质簇上的代数循环
- 批准号:
385795-2010 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Algebraic cycles on homogeneous varieties
同质簇上的代数循环
- 批准号:
385795-2010 - 财政年份:2013
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Algebraic cycles on homogeneous varieties
同质簇上的代数循环
- 批准号:
396100-2010 - 财政年份:2012
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
- 批准号:10401026
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
- 批准号:
2302475 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Continuing Grant
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
- 批准号:
2247334 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Integrability in Gromov--Witten theory
格罗莫夫--维滕理论中的可积性
- 批准号:
22K03265 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Unramified cohomology groups and rationality problem for fields of invariants
无分支上同调群和不变量域的合理性问题
- 批准号:
19K03418 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gromov-Witten Invariants and Extraordinary Cohomology
Gromov-Witten 不变量和非凡上同调
- 批准号:
1906326 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Continuing Grant
K-theoretic enumerative invariants and q-difference equations
K 理论枚举不变量和 q 差分方程
- 批准号:
19F19802 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Oriented cohomology and invariants of homogeneous spaces
齐次空间的有向上同调和不变量
- 批准号:
RGPIN-2015-04469 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual