Visualizing calculus from the completeness of R to Taylor's Remainder Theorem
从 R 的完备性到泰勒剩余定理的微积分可视化
基本信息
- 批准号:467563-2014
- 负责人:
- 金额:$ 0.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:University Undergraduate Student Research Awards
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
无摘要- Aucun sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyhurst, Emily其他文献
Tyhurst, Emily的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyhurst, Emily', 18)}}的其他基金
Particle Dispersion in the Fraser River plume
弗雷泽河羽流中的颗粒分散
- 批准号:
513051-2017 - 财政年份:2017
- 资助金额:
$ 0.33万 - 项目类别:
University Undergraduate Student Research Awards
Numerical Simulation of River Plumes
河流羽流的数值模拟
- 批准号:
495274-2016 - 财政年份:2016
- 资助金额:
$ 0.33万 - 项目类别:
University Undergraduate Student Research Awards
Automated Testing in an Integration Factory Environment
集成工厂环境中的自动化测试
- 批准号:
484413-2015 - 财政年份:2015
- 资助金额:
$ 0.33万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
相似国自然基金
基于随机网络演算的无线机会调度算法研究
- 批准号:60702009
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
低维和高维流形理论中的一些问题
- 批准号:10671018
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:面上项目
大偏差与随机变分学
- 批准号:19131043
- 批准年份:1991
- 资助金额:6.0 万元
- 项目类别:重点项目
相似海外基金
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
- 批准号:
2315747 - 财政年份:2024
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Equivariant Schubert calculus for p-compact groups
p-紧群的等变舒伯特微积分
- 批准号:
23K03092 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Accessible Calculus Project: Advancing Equity by Democratizing Access to Advanced Mathematics
无障碍微积分项目:通过民主化高级数学的普及来促进公平
- 批准号:
2315197 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Conference: International conference on Malliavin calculus and related topics
会议:Malliavin 微积分及相关主题国际会议
- 批准号:
2308890 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Lp-Approximation Properties, Multipliers, and Quantized Calculus
Lp 近似属性、乘子和量化微积分
- 批准号:
2247123 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
- 批准号:
23H03354 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Accessible Calculus Project: Advancing Equity by Democratizing Access to Advanced Mathematics
无障碍微积分项目:通过民主化高级数学的普及来促进公平
- 批准号:
2315199 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Continuing Grant
Predictable Variations in Stochastic Calculus
随机微积分的可预测变化
- 批准号:
EP/Y024524/1 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Research Grant














{{item.name}}会员




