Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery

基于低维材料的能量存储、转换和传输集成系统

基本信息

  • 批准号:
    RGPIN-2014-04378
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Miniaturization and on-chip integration of energy storage, delivery and conversion circuitry is the key to unlocking a new generation of electronic applications, from battery-less wireless sensors to low-cost photovoltaics. Indeed, the bio-sensing and bio-medical implications of self-powered chips alone are staggering. However, given that conventional geometric scaling of front-end Si CMOS and back-end metals are coming to an end, miniaturization of such circuitry remains will be impossible. This proposal aims to breakthrough diminishing scaling returns by using low-dimensional materials (LDMs) such as 1-dimensional (1D) carbon nanotubes (CNTs), 2-dimensional (2D) graphene and 2D transition metal di-chalcogenides (TMDs) sheets. With diameter <2nm (CNTs) or thickness <1nm (2D LDMs), LDMs offer the smallest possible material dimensions. This gives LDMs superior electrical and optical properties versus traditional materials, which is exactly what is needed for miniaturization of energy-efficient circuits. Specifically, this proposal develops LDM-based energy storage and conversion systems across two phases, with Phase I (Years 1-3) focused on the underlying physics of three fundamental technology-level challenges and Phase 2 (Years 4-5) focused on integrated circuit-level solutions. PHASE I: The first technology challenge is to miniaturize passive devices so they can be integrated on-chip. This is not currently possible because large value capacitors (>1 nF) and inductors (>100 nH) are so large that they must be located off-chip. LDMs have potential to overcome this, with high-potential nanostructures including CNT bundles/grapheme spirals and high-density CNT forests/bilayer grapheme/multi-layer graphene-h-BN-graphene structures. However, for LDMs to achieve their potential, problems like the unacceptably low quality factor caused by poor LDM/metal contact must be addressed. The second technology challenge is to step-change the size and performance of active devices. With conventional Si CMOS scaling increasingly limited by leakage and parasitics, 2D TMDs are high-potential due to their thin body and reasonable bandgap. However, compact models that capture sufficient device information to be used for rapid circuit simulation and chip design do not yet exist, and many key TMD properties are still unknown (e.g. frequency-dependent noise characteristics and transport linearity). The third technology challenge is to address the significant parasitic capacitances that can severely degrade post-layout performance of highly miniaturized circuits. This can be done by adopting “parasitic-aware” circuit design techniques that close the gap between pre-layout design and post-layout implementation and potentially convert parasitic “waste” into useful passive components. PHASE II: Once the underlying technology challenges of practical LDM-based passive and active devices are addressed, Phase II will integrate the learning and produce circuit-level models and designs. This will include co-optimization of device structures and circuit topologies to ensure that the unique properties of LDMs are fully utilized and device structures are optimized for target applications. The end result will be physical prototypes that prove LDMs can practically miniaturize energy storage and conversion circuitry for a myriad of applications. Furthermore, by integrating a comprehensive library of active and passive technology models and co-simulation tools, this program will be provide a foundation that future application-specific research can build from.
从无电池无线传感器到低成本光伏,能量存储、传输和转换电路的小型化和片上集成是开启新一代电子应用的关键。事实上,仅自供电芯片的生物传感和生物医学意义就令人震惊。然而,考虑到传统的前端Si CMOS和后端金属的几何缩放即将结束,这种电路的小型化仍然是不可能的。该提案旨在通过使用低维材料(ldm),如一维(1D)碳纳米管(CNTs),二维(2D)石墨烯和二维过渡金属双硫族化合物(TMDs)片,突破缩放收益递减的问题。由于直径<2nm (CNTs)或厚度<1nm (2D ldm), ldm提供了尽可能小的材料尺寸。与传统材料相比,这使得ldm具有优越的电学和光学特性,这正是节能电路小型化所需要的。具体而言,该提案分两个阶段开发基于ldm的能量存储和转换系统,第一阶段(1-3年)侧重于三个基本技术层面挑战的底层物理,第二阶段(4-5年)侧重于集成电路层面的解决方案。第一阶段:第一个技术挑战是将无源器件小型化,使其能够集成在芯片上。目前这是不可能的,因为大值电容器(> 1nf)和电感(> 100nh)太大了,它们必须位于片外。ldm具有克服这一问题的潜力,其高潜力的纳米结构包括碳纳米管束/石墨烯螺旋和高密度碳纳米管森林/双层石墨烯/多层石墨烯-h- bn -石墨烯结构。然而,为了使LDM发挥其潜力,必须解决由LDM/金属接触不良引起的不可接受的低质量因素等问题。第二个技术挑战是逐步改变有源器件的尺寸和性能。由于传统的Si CMOS缩放越来越受到泄漏和寄生的限制,2D tmd由于其薄的体和合理的带隙而具有高电位。然而,目前还不存在能够捕获足够的器件信息以用于快速电路仿真和芯片设计的紧凑模型,并且许多关键的TMD特性仍然未知(例如,频率相关的噪声特性和传输线性度)。第三个技术挑战是解决显著的寄生电容,寄生电容会严重降低高度小型化电路的布局后性能。这可以通过采用“寄生感知”电路设计技术来实现,该技术可以缩小布局前设计和布局后实现之间的差距,并可能将寄生“废物”转化为有用的无源元件。第二阶段:一旦实际基于ldm的无源和有源器件的潜在技术挑战得到解决,第二阶段将整合学习并产生电路级模型和设计。这将包括器件结构和电路拓扑的协同优化,以确保ldm的独特特性得到充分利用,器件结构针对目标应用进行优化。最终的结果将是物理原型,证明ldm实际上可以小型化能量存储和转换电路,用于无数的应用。此外,通过集成一个全面的主动和被动技术模型和联合仿真工具库,该计划将为未来的特定应用研究提供基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei, Lan其他文献

Random forest regression on joint role of meteorological variables, demographic factors, and policy response measures in COVID-19 daily cases: global analysis in different climate zones.
  • DOI:
    10.1007/s11356-023-27320-7
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Lyu, Yiran;Wang, Yu;Jiang, Chao;Ding, Cheng;Zhai, Mengying;Xu, Kaiqiang;Wei, Lan;Wang, Jiao
  • 通讯作者:
    Wang, Jiao
Ca2+ signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin
Using Geographic Information System-based Ecologic Niche Models to Forecast the Risk of Hantavirus Infection in Shandong Province, China
Free-view gait recognition
  • DOI:
    10.1371/journal.pone.0214389
  • 发表时间:
    2019-04-16
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tian, Yonghong;Wei, Lan;Huang, Tiejun
  • 通讯作者:
    Huang, Tiejun
Early life stress perturbs the maturation of microglia in the developing hippocampus.
  • DOI:
    10.1016/j.bbi.2016.06.006
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Delpech, Jean-Christophe;Wei, Lan;Hao, Jin;Yu, Xiaoqing;Madore, Charlotte;Butovsky, Oleg;Kaffman, Arie
  • 通讯作者:
    Kaffman, Arie

Wei, Lan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei, Lan', 18)}}的其他基金

Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
High Resolution Thermal Imaging System For Thermal Design, Validation, and Failure Analysis of High Performance Digital and Radio Frequency Integrated Circuits
用于高性能数字和射频集成电路热设计、验证和故障分析的高分辨率热成像系统
  • 批准号:
    472585-2015
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Low-dimensional material-based nanolaser using photonic bound states in the continuum
使用连续体中的光子束缚态的基于低维材料的纳米激光器
  • 批准号:
    23K26155
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
  • 批准号:
    2301580
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Low-dimensional material-based nanolaser using photonic bound states in the continuum
使用连续谱中的光子束缚态的基于低维材料的纳米激光器
  • 批准号:
    23H01461
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Creation of exotic low-dimensional material originated from phyllosilicate and control of its electronic property
源自页硅酸盐的奇异低维材料的创建及其电子特性的控制
  • 批准号:
    21K18893
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Design and development of structural-anisotropic three-dimensional phononic crystal toward low thermal conductivity material
面向低导热材料的结构各向异性三维声子晶体的设计与开发
  • 批准号:
    20H02621
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Custom low-dimensional material systems explored from atom to bulk
从原子到块体探索的定制低维材料系统
  • 批准号:
    RGPIN-2016-06717
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Custom low-dimensional material systems explored from atom to bulk
从原子到块体探索的定制低维材料系统
  • 批准号:
    RGPIN-2016-06717
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Low-Dimensional-Material-Based Integrated Systems for Energy Storage, Conversion and Delivery
基于低维材料的能量存储、转换和传输集成系统
  • 批准号:
    RGPIN-2014-04378
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了