Self-assembly of redox molecules

氧化还原分子的自组装

基本信息

  • 批准号:
    RGPIN-2014-04444
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Nature of the work to be done: Our research program uses organic synthesis to design novel organic semiconductors that could find applications in photovoltaics, transistors, diodes or batteries with the potential of printable, flexible, lightweight and economical electronics. The primary goal of our program is to synthesize new organic building blocks that can carry charge; in addition, we design our new molecules to promote self-assembly to optimize the ability to move charges. The research proposal targets specifically organic photovoltaics (OPVs) applications by using light-absorbing molecules, porphyrinoids, and charge carrying molecules, quinones. Essential to the operation of the organic semiconductors in devices is the ability to carry charges over large distances. Our proposal suggests liquid crystalline phases, which are intermediate phases between liquids and crystals, enable the materials to maintain flexibility yet take advantage of the high charge carrying ability found in crystals. By exploiting supramolecular chemistry principles, we can induce molecules to self-assemble into soft phases, such as liquid crystals. Our synthetic design involves the synthesis of a rigid core that is surrounded by flexible chains that impart the flexibility characteristics. The balance of the electronic properties and size of the rigid core with the length and composition of the flexible chains can lead to liquid crystalline phases. The organized materials force the rigid cores to overlap, which is critical for the mixing of orbitals that allow for intermolecular charge transport. Our inspiration is derived from a simplistic view of the early events in photosynthesis. Specifically, nature uses porphyrinoids for light harvesting and quinones as ‘electron’ shuttles under exquisite control and organization. We propose to enhance the light harvesting properties of porphyrin components by synthetic means and we have already demonstrated successful self-assembly with these modified porphyrins. For the quinones, electron acceptor, building blocks we propose several new cores that show promising electron affinities that will be furnished with self-assembling functionality. Why and to whom the research is important: By combining new organic charge carrying building blocks with self-assembling properties, we are targeting a disruptive step, as opposed to incremental, in new organic materials that can migrate charges (either holes or electrons) efficiently, which will impact all of the organic semiconductor applications described above. Exploiting the proposed materials will have a significant impact on OPV applications, such that this work could enable flexible, economical, large area printing of solar cells, which are significant roadblocks to large-scale solar energy adoption. Furthermore, the new syntheses will be a benefit to the organic chemists, the novel electronic and optical properties will be insightful for the materials chemist and the self-assembly is key to build better understanding of intermolecular interactions for the supramolecular chemistry community. Anticipated outcomes: First, the production of self-assembling materials that shuttle charges efficiently could be the step needed for organic semiconductors to flourish. Second, students will be trained as scientists and learn how to communicate with diverse audiences and become leaders to tackle unforeseen challenges. How the research field and Canada will benefit: Since the outcomes of the research could provide an abrupt change in the efficiency of organic compounds to carry charge, Canada could be an emerging leader in organic electronics, particularly photovoltaics devices that are inexpensive, printable and flexible.
要做的工作性质:我们的研究项目使用有机合成来设计新型有机半导体,这些半导体可以应用于光伏、晶体管、二极管或电池,具有可印刷、灵活、轻便和经济的电子产品的潜力。我们计划的主要目标是合成能够携带电荷的新的有机构件;此外,我们设计了新的分子来促进自组装,以优化电荷移动的能力。该研究建议特别针对有机光伏(OPV)应用,通过使用光吸收分子、卟啉类化合物和电荷携带分子类化合物。有机半导体在设备中运行的关键是能够远距离携带电荷。我们的建议认为,液晶相是液体和晶体之间的中间相,使材料能够保持灵活性,同时利用晶体中发现的高电荷携带能力。通过利用超分子化学原理,我们可以诱导分子自组装成软相,如液晶。我们的合成设计包括合成刚性核心,该核心被赋予柔性特征的柔性链所包围。刚性核的电子性质和尺寸与柔性链的长度和组成的平衡可以导致液晶相。有组织的材料迫使刚性核心重叠,这对允许分子间电荷传输的轨道混合至关重要。我们的灵感来源于对光合作用早期事件的简单化看法。具体地说,大自然在精致的控制和组织下,使用卟啉类化合物来收集光线,使用苯醌类化合物作为电子穿梭工具。我们建议通过合成的方法来增强卟啉组分的捕光性能,并且我们已经成功地展示了这些修饰的卟啉的自组装。对于苯二酚、电子受体、积木,我们提出了几个新的核心,这些核心显示出有希望的电子亲和力,并将配备自组装功能。为什么以及对谁来说这项研究很重要:通过将携带新的有机电荷的构建块与自组装性能相结合,我们的目标是在新的有机材料中迈出颠覆性的一步,而不是渐进的步骤,这种材料可以有效地迁移电荷(空穴或电子),这将影响上述所有有机半导体应用。开发所建议的材料将对OPV的应用产生重大影响,从而使这项工作能够灵活、经济、大面积地打印太阳能电池,这是大规模采用太阳能的重要障碍。此外,新的合成将有利于有机化学家,新的电子和光学性质将是材料化学家的洞察力,自组装是为超分子化学界建立更好的分子间相互作用的关键。预期的结果:首先,生产可高效充电的自组装材料可能是有机半导体蓬勃发展所需的一步。其次,学生将接受科学家培训,学习如何与不同的受众沟通,并成为应对不可预见的挑战的领导者。研究领域和加拿大将如何受益:由于研究结果可能导致有机化合物携带电荷的效率发生突变,加拿大可能成为有机电子领域的新兴领先者,特别是廉价、可印刷和灵活的光伏设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sutherland, Todd其他文献

Sutherland, Todd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sutherland, Todd', 18)}}的其他基金

Molecular Approach to Conjugated Materials
共轭材料的分子方法
  • 批准号:
    RGPIN-2019-04851
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Approach to Conjugated Materials
共轭材料的分子方法
  • 批准号:
    RGPIN-2019-04851
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Approach to Conjugated Materials
共轭材料的分子方法
  • 批准号:
    RGPIN-2019-04851
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular Approach to Conjugated Materials
共轭材料的分子方法
  • 批准号:
    RGPIN-2019-04851
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Self-assembly of redox molecules
氧化还原分子的自组装
  • 批准号:
    RGPIN-2014-04444
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Self-assembly of redox molecules
氧化还原分子的自组装
  • 批准号:
    RGPIN-2014-04444
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Self-assembly of redox molecules
氧化还原分子的自组装
  • 批准号:
    RGPIN-2014-04444
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Self-assembly of redox molecules
氧化还原分子的自组装
  • 批准号:
    RGPIN-2014-04444
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Organic charge transfer at interfaces
界面有机电荷转移
  • 批准号:
    328037-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Organic charge transfer at interfaces
界面有机电荷转移
  • 批准号:
    328037-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

ENKD1在纺锤体定向中的作用及分子机制
  • 批准号:
    32000490
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
肌球蛋白18B通过影响微丝应力纤维组装调控肿瘤细胞迁移的机制研究
  • 批准号:
    31970660
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
嵌段共聚物多级自组装的多尺度模拟
  • 批准号:
    20974040
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
早型星系的测光研究
  • 批准号:
    10973011
  • 批准年份:
    2009
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
  • 批准号:
    20973136
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
功能有机配体新颖设计与有机金属超分子导向组装
  • 批准号:
    20772152
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Redox-Induced Assembly of Supported Lipid Membranes
氧化还原诱导的支撑脂质膜组装
  • 批准号:
    573106-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    University Undergraduate Student Research Awards
Radical redox catalysis by Ti complexes
Ti配合物的自由基氧化还原催化
  • 批准号:
    9974150
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
Radical redox catalysis by Ti complexes
Ti配合物的自由基氧化还原催化
  • 批准号:
    10600149
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
Radical redox catalysis by Ti complexes
Ti配合物的自由基氧化还原催化
  • 批准号:
    10372940
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
Rational Design of Redox-Active Ligands for the Assembly of Novel Paramagnetic Clusters
用于组装新型顺磁性簇的氧化还原活性配体的合理设计
  • 批准号:
    518475-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Rational Design of Redox-Active Ligands for the Assembly of Novel Paramagnetic Clusters
用于组装新型顺磁性簇的氧化还原活性配体的合理设计
  • 批准号:
    518475-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Redox chemical-fueled dissipative self-assembly of active materials
氧化还原化学燃料的活性材料耗散自组装
  • 批准号:
    1904939
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Rational Design of Redox-Active Ligands for the Assembly of Novel Paramagnetic Clusters
用于组装新型顺磁性簇的氧化还原活性配体的合理设计
  • 批准号:
    518475-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Self-assembly of redox molecules
氧化还原分子的自组装
  • 批准号:
    RGPIN-2014-04444
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Self-assembly of redox molecules
氧化还原分子的自组装
  • 批准号:
    RGPIN-2014-04444
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了