Nitrogen fixation and hydrogen production by photosynthetic bacteria

光合细菌固氮产氢

基本信息

  • 批准号:
    RGPIN-2014-04515
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2014
  • 资助国家:
    加拿大
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

The non-sulfur purple photosynthetic bacteria serve as excellent model organism for research on a series of fundamental and applied basic biological areas of interest; photosynthesis, nitrogen fixation, and biotechnological conversions. The photosynthetic bacteria are thus excellent organisms for studying both general and unique aspects of nitrogen fixation and its regulation. Besides the regulation at the transcriptional level with respect to oxygen and fixed nitrogen shared by most nitrogen fixing organisms, the photosynthetic bacteria are capable of regulating the activity of preformed enzyme through the covalent and metabolic regulation of nitrogenase. We have shown that the regulation of nitrogenase with respect to the sudden external addition of ammonium requires the membrane bound ammonia sensor/transporter AmtB. Amt/Rh family members are found in almost every sequenced organism and are present in archaea, bacteria, protists, plants, fungi and invertebrates. We will continue our investigations into the structure/function of AmtB and its role in controlling the the nitrogenase regulatory system. In particular, we will be applying site directed mutagenesis to understanding the role that specific amino acids play in ammonia sensing and/or transport. The nitrogenase enzymatic machinery is also responsible for hydrogen production by photosynthetic bacteria. These organisms, which have the potential capacity to use a variety of feedstocks, are well known for their light driven conversion of organic acids to hydrogen and carbon dioxide. Thus, they are ideal candidates for two stage or co-culture systems which derive additional hydrogen from the effluents of dark fermentations. In addition, various industrial and agricultural waste streams rich in organic acids can potentially serve as substrates for photofermentation. We have recently demonstrated a number of improvements in hydrogen production including the demonstration of the stoichiometric conversion to hydrogen of glycerol produced as a waste product of biodiesel manufacture and the generation of appreciable amounts of hydrogen from various molasses fractions. In a series of investigations we have also recently shown that significant amounts of hydrogen, up to 9 moles of H2 per mole of glucose, can be obtained in a one step, single stage fermentation of glucose. Of some interest, we have also demonstrated for the first time the production of hydrogen thought microaerobic fermentation. This process, which promises to enable the release of additional hydrogen from substrates by coupling further degradation with the generation of energy from limited respiration, will be further investigated under the present grant. This technology is of interest in the broader context of industrial biotechnology as it would allow the development of “unbalanced’ fermentations. Two approaches will be used; development of bioreactor technology using a redox stat to control the oxygen levels for achieving maximum substrate conversion, and metabolic engineering to increase metabolic flux in the desired direction. Metabolic engineering will also be used, in conjunction with metabolic modeling to further increase photofermentative hydrogen production. Thus, the current research is of both fundamental and applied interest. Further research on the molecular details of the involvement of AmtB in nitrogenase regulation should shed more light on this unique form of metabolic regulation. In addition, increasing hydrogen production through both physiological manipulation and metabolic engineering will pave the way for the production of other chemicals by these organisms as well as possibly providing a practical means of sustainable hydrogen generation from various waste materials.
非硫紫色光合细菌是研究一系列基础和应用基础生物学领域的优秀模式生物;光合作用、固氮和生物技术转化。因此,光合细菌是研究固氮及其调节的一般和独特方面的优秀生物。光合细菌除了对大多数固氮生物共有的氧和固定氮进行转录水平的调节外,还能够通过固氮酶的共价和代谢调节来调节预形成酶的活性。我们已经表明,固氮酶的调节相对于突然的外部添加铵需要膜结合的氨传感器/转运蛋白AmtB。Rh/Rh家族成员几乎存在于所有测序的生物体中,并且存在于古细菌、细菌、原生生物、植物、真菌和无脊椎动物中。我们将继续研究AmtB的结构/功能及其在控制固氮酶调节系统中的作用。特别是,我们将应用定点诱变来了解特定氨基酸在氨传感和/或运输中的作用。 固氮酶的酶机制也负责光合细菌的氢生产。这些生物体具有使用各种原料的潜在能力,以其将有机酸转化为氢气和二氧化碳的光驱动转化而闻名。因此,它们是从黑暗发酵的流出物中获得额外氢气的两阶段或共培养系统的理想候选者。此外,各种富含有机酸的工业和农业废物流可以潜在地用作光发酵的底物。我们最近已经证明了在氢气生产中的许多改进,包括作为生物柴油制造的废物产物产生的甘油的化学计量转化为氢气的证明,以及从各种糖蜜馏分中产生可观量的氢气。在一系列研究中,我们最近还表明,在葡萄糖的一步、单阶段发酵中可以获得显著量的氢气,每摩尔葡萄糖高达9摩尔H2。我们还首次展示了微氧发酵生产氢气的方法。这一过程,这承诺,使更多的氢从底物的释放耦合进一步降解与有限的呼吸产生的能量,将进一步研究根据本授权。这项技术在工业生物技术的更广泛背景下是令人感兴趣的,因为它将允许“不平衡”发酵的发展。将采用两种办法;生物反应器技术的发展,使用氧化还原状态来控制氧水平以实现最大底物转化,以及代谢工程来增加所需方向上的代谢通量。代谢工程也将与代谢建模结合使用,以进一步增加光发酵产氢。因此,目前的研究是基础和应用的兴趣。对AmtB参与固氮酶调节的分子细节的进一步研究应该对这种独特的代谢调节形式有更多的了解。此外,通过生理操纵和代谢工程增加氢气产量将为这些生物体生产其他化学品铺平道路,并可能提供从各种废物中可持续产生氢气的实用方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hallenbeck, Patrick其他文献

Hallenbeck, Patrick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hallenbeck, Patrick', 18)}}的其他基金

Increasing biological hydrogen production
增加生物氢产量
  • 批准号:
    RGPIN-2015-04605
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Increasing biological hydrogen production
增加生物氢产量
  • 批准号:
    RGPIN-2015-04605
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Increasing biological hydrogen production
增加生物氢产量
  • 批准号:
    RGPIN-2015-04605
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Increasing biological hydrogen production
增加生物氢产量
  • 批准号:
    RGPIN-2015-04605
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Increasing biological hydrogen production
增加生物氢产量
  • 批准号:
    RGPIN-2015-04605
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Metabolic studies of the Solarvest H2 producing algal strain for strain/process improvement
Solarvest H2 产藻菌株的代谢研究,用于菌株/工艺改进
  • 批准号:
    463864-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Plus Grants Program
Cryo ice cider production-Analysis and control of contamination
冷冻冰苹果酒生产污染分析与控制
  • 批准号:
    475783-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program
Nitrogen fixation by photosynthetic bacteria: fundamentals and applications
光合细菌固氮:基础知识和应用
  • 批准号:
    36584-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular characterization of the Solarvest H2 producing algal strain for the development of targets for strain/process improvement
Solarvest H2 产氢藻菌株的分子表征,用于开发菌株/工艺改进的目标
  • 批准号:
    445655-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program
Nitrogen fixation by photosynthetic bacteria: fundamentals and applications
光合细菌固氮:基础知识和应用
  • 批准号:
    36584-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

海洋微藻生物固定燃煤烟气中CO2的性能与机理研究
  • 批准号:
    50806049
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study on novel functions of nitrogen fixation and hydrogen utilization in bacteria of the order Bacteroidales
拟杆菌目细菌固氮利用氢新功能的研究
  • 批准号:
    26292047
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
  • 批准号:
    8645652
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
  • 批准号:
    8217963
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
  • 批准号:
    8516536
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
Hydrogen production and nitrogen fixation in the North Pacific Subtropical Gyre
北太平洋副热带环流的氢气生产和固氮
  • 批准号:
    1153656
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Mechanism of Energy Transduction and Substrate Activation in Biological Nitrogen
生物氮的能量转换和底物活化机制
  • 批准号:
    8839784
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
Nitrogen fixation, hydrogen production and N2O emissions
固氮、制氢和 N2O 排放
  • 批准号:
    397781-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.89万
  • 项目类别:
    University Undergraduate Student Research Awards
The relationship between hydrogen biogeochemistry and nitrogen fixation in the pacific ocean
太平洋氢生物地球化学与固氮的关系
  • 批准号:
    349124-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Special Research Opportunity Program - Project
The relationship between hydrogen biogeochemistry and nitrogen fixation in the pacific ocean
太平洋氢生物地球化学与固氮的关系
  • 批准号:
    349124-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Special Research Opportunity Program - Project
Nitrogen Fixation, Hydrogen Metabolism, and Bioenergetic Regulation in Photosynthetic Bacteria
光合细菌的固氮、氢代谢和生物能调节
  • 批准号:
    7910747
  • 财政年份:
    1979
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了