Symmetric Spaces and Geometric Group Theory
对称空间和几何群论
基本信息
- 批准号:RGPIN-2014-04521
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I propose to study geometry and dynamics in several settings. Many mathematical problems can be interpreted as problems about physical systems; this gives additional insight and intuition into their workings. Relevant here, the "vibrational modes" of curved space can also be interpreted as the energy states of a quantum particle moving in that environment. In that case, high-frequency vibration roughly corresponds to a situation where quantum effects should be small, so that predictions from classical pre-quantum physics (in which the particle undergoes billiard motion in the space) inform the quantum-mechanical model, leading to specific expectations when this classical (billiard) motion is highly chaotic. There has been recent progress on such problems, mainly in the case where the underlying space has a large degree of symmetry, and I plan to continue my work in that direction, especially when the symmetries are related to number theory -- to arithmetic properties of whole numbers. In that case the techniques that others (and myself) are developing also have application to deep problems in analytic number theory. Recently I started looking at the problem for curved spaces constructed by random methods. I am also intereted in the study of curved space in general, especially "kinked" spaces which can have corners, cone points and the like. Sometimes it is possible to transfer ideas from flat and smooth spaces to this rougher setting. In particular, I study the symmetry (or lack thereof) of such spaces. For example, we have showed certain symmetry structures (groups) are too complicated to be the symmetry structure of a smooth space (under certain restrictions). More recently I have become interested in the topology (deformation behaviour) of symmetries. In this setting one again asks in how many ways a single symmetry structure (group) can be applied to a fixed space, and whether deformation of the symmetry structure can simplify it. I also work on the vibrational modes of random networks ("graphs"). This provides information about their connectivity and this area is a useful training ground for undergraduate research students.
我打算在几种环境中学习几何和动力学。许多数学问题可以被解释为关于物理系统的问题;这给了他们更多的洞察力和直觉。与此相关的是,弯曲空间的“振动模式”也可以解释为量子粒子在该环境中运动的能量状态。在这种情况下,高频振动大致对应于量子效应应该很小的情况,因此经典前量子物理学(粒子在空间中经历台球运动)的预测为量子力学模型提供了信息,从而导致当这种经典(台球)运动高度混沌时的特定预期。最近在这类问题上已经取得了一些进展,主要是在基础空间具有很大程度对称性的情况下,我计划继续我在这个方向上的工作,特别是当对称性与数论有关时-整数的算术性质。在这种情况下,其他人(和我自己)正在开发的技术也可以应用于解析数论中的深层问题。最近,我开始研究用随机方法构造的弯曲空间的问题。我也有兴趣在研究一般的弯曲空间,特别是“扭结”空间,可以有角落,锥点等。有时候,我们可以将想法从平坦光滑的空间转移到这种粗糙的环境中。特别是,我研究这种空间的对称性(或缺乏对称性)。例如,我们已经证明了某些对称结构(群)太复杂而不能成为光滑空间的对称结构(在某些限制下)。最近,我对对称的拓扑(变形行为)产生了兴趣。在这种情况下,人们又会问,一个单一的对称结构(群)有多少种方式可以应用于一个固定的空间,以及对称结构的变形是否可以简化它。这提供了有关其连接性的信息,这一领域是本科研究生的有用培训基地。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Silberman, Lior其他文献
The topology of Baumslag–Solitar representations
Baumslag 的拓扑 - Solitar 表示
- DOI:
10.1142/s1793525320500065 - 发表时间:
2021 - 期刊:
- 影响因子:0.8
- 作者:
Bergeron, Maxime;Silberman, Lior - 通讯作者:
Silberman, Lior
Silberman, Lior的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Silberman, Lior', 18)}}的其他基金
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
- 批准号:
RGPIN-2019-03964 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
- 批准号:
RGPIN-2019-03964 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
- 批准号:
RGPIN-2019-03964 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
- 批准号:
RGPIN-2019-03964 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Symmetric Spaces and Geometric Group Theory
对称空间和几何群论
- 批准号:
RGPIN-2014-04521 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Symmetric Spaces and Geometric Group Theory
对称空间和几何群论
- 批准号:
RGPIN-2014-04521 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Symmetric Spaces and Geometric Group Theory
对称空间和几何群论
- 批准号:
RGPIN-2014-04521 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Symmetric Spaces and Geometric Group Theory
对称空间和几何群论
- 批准号:
RGPIN-2014-04521 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic forms and geometric group theory
自守形式和几何群论
- 批准号:
355528-2008 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Automorphic forms and geometric group theory
自守形式和几何群论
- 批准号:
355528-2008 - 财政年份:2011
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Geometric analysis of convolution operators on symmetric spaces and its applications to integral geometry and inverse problems
对称空间上卷积算子的几何分析及其在积分几何和反问题中的应用
- 批准号:
21K03264 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Springer Theory for Symmetric Spaces, Real Groups, Hitchin Fibrations, and Geometric Langlands
对称空间、实群、希钦纤维和几何朗兰兹的施普林格理论
- 批准号:
2022303 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Symmetric Spaces and Geometric Group Theory
对称空间和几何群论
- 批准号:
RGPIN-2014-04521 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Springer Theory for Symmetric Spaces, Real Groups, Hitchin Fibrations, and Geometric Langlands
对称空间、实群、希钦纤维和几何朗兰兹的施普林格理论
- 批准号:
1702337 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Symmetric Spaces and Geometric Group Theory
对称空间和几何群论
- 批准号:
RGPIN-2014-04521 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Geometric Analysis of Schroedinger equations on symmetric spaces
对称空间薛定谔方程的几何分析
- 批准号:
17K05328 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis on asymptotically symmetric spaces and parabolic geometries
渐近对称空间和抛物线几何的几何分析
- 批准号:
17K14189 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Symmetric Spaces and Geometric Group Theory
对称空间和几何群论
- 批准号:
RGPIN-2014-04521 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Symmetric Spaces and Geometric Group Theory
对称空间和几何群论
- 批准号:
RGPIN-2014-04521 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of the geometric and analytic structure of Schroedinger equations on symmetric spaces and its applications
对称空间薛定谔方程的几何和解析结构的阐明及其应用
- 批准号:
26400116 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




