Elucidation of the geometric and analytic structure of Schroedinger equations on symmetric spaces and its applications

对称空间薛定谔方程的几何和解析结构的阐明及其应用

基本信息

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blowup and global existence of a solution to a semilinear reaction-diffusion system with the fractional Laplacian
Surjectivity of mean value operators on noncompact symmetric spaces
非紧对称空间上均值算子的满射性
  • DOI:
    10.1016/j.jfa.2016.12.022
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Christensen Jens;Gonzalez Fulton;Kakehi Tomoyuki
  • 通讯作者:
    Kakehi Tomoyuki
平均値作用素の全射性について
关于均值算子的满射性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    片岡 清臣;Takeo Kojima;Tomoyuki KAKEHI;竹山美宏;Frank Hansen;筧 知之
  • 通讯作者:
    筧 知之
Fundamental solution of the Schroedinger equation on symmetric spaces
对称空间上薛定谔方程的基本解
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki Inou;Sabyasachi Mukherjee;Tomoyuki KAKEHI
  • 通讯作者:
    Tomoyuki KAKEHI
Schroedinger equations on compact symmetric spaces and Gauss sums
紧对称空间和高斯和上的薛定谔方程
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    片岡 清臣;Takeo Kojima;Tomoyuki KAKEHI
  • 通讯作者:
    Tomoyuki KAKEHI
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAKEHI Tomoyuki其他文献

KAKEHI Tomoyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAKEHI Tomoyuki', 18)}}的其他基金

Study of algebraic structure and geometric structure of Schroedinger equations on symmetric spaces
对称空间上薛定谔方程的代数结构和几何结构研究
  • 批准号:
    23540243
  • 财政年份:
    2011
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Radon transforms on homogeneous spaces and their application to harmonic analysis
齐次空间上的 Radon 变换及其在调和分析中的应用
  • 批准号:
    19540208
  • 财政年份:
    2007
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic analysis on Grassmann manifolds and its applications to Radon transforms and inverse problems
格拉斯曼流形的调和分析及其在 Radon 变换和反演问题中的应用
  • 批准号:
    16540136
  • 财政年份:
    2004
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global properties of differential operators of subdeterminantal type and integral geometry on symmetric spaces
对称空间上次行列式微分算子与积分几何的全局性质
  • 批准号:
    13640203
  • 财政年份:
    2001
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

電磁場中の非線形シュレディンガー方程式の修正散乱についての多角的研究
电磁场中非线性薛定谔方程修正散射的多方面研究
  • 批准号:
    24K06796
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変分的手法による非線形シュレディンガー方程式の解の存在性及び多重性
使用变分法求解非线性薛定谔方程的存在性和多重性
  • 批准号:
    24KJ2070
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形シュレディンガー方程式の初期値による解の大域挙動の分類
通过非线性薛定谔方程的初始值对解的全局行为进行分类
  • 批准号:
    22KJ2778
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
不変性に乏しい非線形シュレディンガー方程式の時間挙動を決定づける初期値の分類
确定不变性较差的非线性薛定谔方程的时间行为的初始值的分类
  • 批准号:
    22KJ2907
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
一般化シュレディンガー方程式に対する実解析的評価式と非線形分散型方程式への応用
广义薛定谔方程的实解析评价公式及其在非线性分布方程中的应用
  • 批准号:
    21K03325
  • 财政年份:
    2021
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形シュレディンガー方程式における確率的効果
非线性薛定谔方程中的随机效应
  • 批准号:
    20K03669
  • 财政年份:
    2020
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形シュレディンガー方程式の解の挙動を決定づける初期値の分類
确定非线性薛定谔方程解的行为的初始值的分类
  • 批准号:
    19J13300
  • 财政年份:
    2019
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
非線形シュレディンガー方程式の数学解析
非线性薛定谔方程的数学分析
  • 批准号:
    17J05828
  • 财政年份:
    2017
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多様体の幾何構造とその上のシュレディンガー方程式の関係
流形的几何结构与其上的薛定谔方程的关系
  • 批准号:
    17J04478
  • 财政年份:
    2017
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
シュレディンガー方程式の散乱行列の構造とハミルトニアンの摂動に対する漸近解析
薛定谔方程散射矩阵的结构及哈密顿量摄动的渐近分析
  • 批准号:
    16J05967
  • 财政年份:
    2016
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了