Machine Learning and Individual-Based Simulation for Theoretical Biology
理论生物学的机器学习和基于个体的模拟
基本信息
- 批准号:RGPIN-2014-06007
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We study the evolutionary process and the emergence of species in a simulated ecosystem. We have conceived EcoSim, an individual-based evolving predator-prey ecosystem simulation. The behavioral model of each individual is unique and is the outcome of the evolution process. One major and unique contribution of this tool is that it combines a behavioral, an evolutionary and a speciation mechanism. We have shown that we can fruitfully apply machine learning techniques to extract the most significant features and provide an easily understandable model to explain the main characteristics of the problem. We will add several functionalities to the simulation to allow more realistic ecological niches to emerge through the evolution of features such as the size, the strength or the perception capacities. Then, we will apply our approach to investigate two new difficult open questions using machine learning approaches to provide semantically rich models and rules that be used by biologists. Choosing an individual as a mate is governed by sexual selection. The females have special preferences for males according to their traits. What still remains controversial is the underlying genetic mechanisms that allows the evolution of female preferences. It is well known that there exist two main genetic quality benefits: good genes and compatible genes. However, the respective role of each one of them in the resulting observed genetic diversity is still not clearly understood. We will investigate multiple hypotheses using several mate choice methods. We will analyze number of different runs, varying many factors and environmental conditions, to understand in which conditions and at what cost such kind of mating strategy could be favored by evolution. Although asexual reproduction is relatively rare in eukaryotes, it has several strong advantages over sexual reproduction. In light of these advantages, it is puzzling why sexual reproduction is so prevalent. We are interested in studying how and why sexual reproduction emerged. The goal of these simulations is to determine whether there is a relationship between level of resources and environmental stressors (predators or pathogens) and mode of reproduction. We will be able to test many hypotheses in different configurations and evaluate what are the circumstances favorable to the apparition and diffusion of sexual reproduction.
我们研究了一个模拟生态系统的进化过程和物种的出现。我们构思了EcoSim,一个基于个体进化的捕食者-猎物生态系统模拟。每个个体的行为模式都是独一无二的,是进化过程的结果。这个工具的一个主要和独特的贡献是它结合了行为、进化和物种形成机制。我们已经证明,我们可以有效地应用机器学习技术来提取最重要的特征,并提供一个易于理解的模型来解释问题的主要特征。我们将在模拟中添加一些功能,以允许通过诸如大小,强度或感知能力等特征的进化来出现更真实的生态位。然后,我们将应用我们的方法来研究两个新的困难的开放问题,使用机器学习方法来提供生物学家使用的语义丰富的模型和规则。选择一个个体作为配偶是由性选择决定的。雌性根据自己的特点对雄性有特殊的偏好。仍然存在争议的是允许女性偏好进化的潜在遗传机制。众所周知,遗传质量效益主要有两种:优良基因和相容基因。然而,它们各自在由此观察到的遗传多样性中的作用仍然不清楚。我们将使用几种配偶选择方法来研究多种假设。我们将分析不同的运行次数,改变许多因素和环境条件,以了解在哪些条件和代价下,这种交配策略可能会被进化所青睐。尽管无性生殖在真核生物中相对罕见,但它比有性生殖有几个强大的优势。考虑到这些优势,有性繁殖为何如此普遍令人费解。我们感兴趣的是研究有性生殖是如何以及为什么出现的。这些模拟的目的是确定资源水平和环境压力源(捕食者或病原体)和繁殖模式之间是否存在关系。我们将能够在不同的配置中测试许多假设,并评估有利于有性生殖的出现和扩散的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gras, Robin其他文献
An Individual-Based Evolving Predator-Prey Ecosystem Simulation Using a Fuzzy Cognitive Map as the Behavior Model
- DOI:
10.1162/artl.2009.gras.012 - 发表时间:
2009-09-01 - 期刊:
- 影响因子:2.6
- 作者:
Gras, Robin;Devaurs, Didier;Aspinall, Adam - 通讯作者:
Aspinall, Adam
Contemporary evolution and genetic change of prey as a response to predator removal
- DOI:
10.1016/j.ecoinf.2014.02.005 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:5.1
- 作者:
Khater, Marwa;Murariu, Dorian;Gras, Robin - 通讯作者:
Gras, Robin
Speciation with gene flow in a heterogeneous virtual world: can physical obstacles accelerate speciation?
- DOI:
10.1098/rspb.2012.0466 - 发表时间:
2012-08-07 - 期刊:
- 影响因子:4.7
- 作者:
Golestani, Abbas;Gras, Robin;Cristescu, Melania - 通讯作者:
Cristescu, Melania
Can we predict the unpredictable?
- DOI:
10.1038/srep06834 - 发表时间:
2014-10-30 - 期刊:
- 影响因子:4.6
- 作者:
Golestani, Abbas;Gras, Robin - 通讯作者:
Gras, Robin
43 genes support the lungfish-coelacanth grouping related to the closest living relative of tetrapods with the Bayesian method under the coalescence model.
- DOI:
10.1186/1756-0500-4-49 - 发表时间:
2011-03-07 - 期刊:
- 影响因子:1.8
- 作者:
Shan, Yunfeng;Gras, Robin - 通讯作者:
Gras, Robin
Gras, Robin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gras, Robin', 18)}}的其他基金
Machine Learning and Individual-Based Simulation for Theoretical Biology
理论生物学的机器学习和基于个体的模拟
- 批准号:
RGPIN-2014-06007 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning and Individual-Based Simulation for Theoretical Biology
理论生物学的机器学习和基于个体的模拟
- 批准号:
RGPIN-2014-06007 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning and Individual-Based Simulation for Theoretical Biology
理论生物学的机器学习和基于个体的模拟
- 批准号:
RGPIN-2014-06007 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning and Individual-Based Simulation for Theoretical Biology
理论生物学的机器学习和基于个体的模拟
- 批准号:
RGPIN-2014-06007 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical Learning and Simulation for Theoretical Biology
理论生物学的统计学习和模拟
- 批准号:
1000228048-2011 - 财政年份:2016
- 资助金额:
$ 1.46万 - 项目类别:
Canada Research Chairs
I2I market assessment for epileptic seizure prediction
癫痫发作预测的 I2I 市场评估
- 批准号:
478915-2015 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Idea to Innovation
Machine Learning and Individual-Based Simulation for Theoretical Biology
理论生物学的机器学习和基于个体的模拟
- 批准号:
RGPIN-2014-06007 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical Learning and Simulation for Theoretical Biology
理论生物学的统计学习和模拟
- 批准号:
1228048-2011 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Canada Research Chairs
Statistical Learning and Simulation for Theoretical Biology
理论生物学的统计学习和模拟
- 批准号:
1000228048-2011 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Canada Research Chairs
Statistical Learning and Simulation for Theoretical Biology
理论生物学的统计学习和模拟
- 批准号:
1000228048-2011 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Canada Research Chairs
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001385/1 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001830/1 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2202699 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2202700 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior
合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响
- 批准号:
2301599 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Individual differences in natural scene semantics investigated with machine learning and neuroimaging
通过机器学习和神经影像研究自然场景语义的个体差异
- 批准号:
RGPIN-2021-03127 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Individual differences in natural scene semantics investigated with machine learning and neuroimaging
通过机器学习和神经影像研究自然场景语义的个体差异
- 批准号:
DGECR-2021-00219 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Launch Supplement
Individual differences in natural scene semantics investigated with machine learning and neuroimaging
通过机器学习和神经影像研究自然场景语义的个体差异
- 批准号:
RGPIN-2021-03127 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning and Individual-Based Simulation for Theoretical Biology
理论生物学的机器学习和基于个体的模拟
- 批准号:
RGPIN-2014-06007 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Electrical detection of individual biomolecular interactions and machine learning-assisted simulations: from single-molecule biophysics to the RISC complex
EAGER:单个生物分子相互作用的电检测和机器学习辅助模拟:从单分子生物物理学到 RISC 复合体
- 批准号:
2027530 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant