A unified finite difference formulation for multiphysics simulations on arbitrary meshes

任意网格上多物理场仿真的统一有限差分公式

基本信息

  • 批准号:
    4484-2011
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Fluid flows exist throughout nature, in biological systems and in man-made devices. Computational Fluid Dynamics (CFD) is one of the tools that engineers use to predict the behaviour of these complex flows, to gain a deeper understanding of the physical phenomena involved, to improve the performance of fluid devices and to design new ones. The need for user-friendly, reliable, highly accurate and computationally efficient methodologies and algorithms has increased as industries continue to rely more heavily on numerical simulation as a tool to improve their product design. Finite difference methods for the numerical solution of the Navier-Stokes equations were very popular in the early years of CFD development, and still form the basis for many research codes. However, their applicability to flows in complicated and highly irregular domains is severely restricted due to their reliance on structured grid systems. This is the primary reason for the popularity of finite volume solvers, particularly in commercial CFD codes. The aim of this research proposal is to develop an innovative Finite Difference methodology that can be applied to arbitrary meshes, regardless of whether the mesh is structured, unstructured or hybrid, and to multiphysics phenomena. The motivation for this research is the benefits of applying this methodology to real engineering flow problems which, due to their domain complexity, generally require the use of unstructured grids. Advantages of having a finite difference solver for such meshes include the fact that finite difference methods are more efficient than finite volume and finite element methods, are easier to analyze and code, and offer a greater opportunity to achieve more accurate solutions.
流体流动存在于整个自然界、生物系统和人造装置中。 计算流体动力学(CFD)是工程师用来预测这些复杂流动行为的工具之一,以更深入地了解所涉及的物理现象,提高流体设备的性能并设计新设备。 对用户友好的,可靠的,高精度和计算效率的方法和算法的需求已经增加,因为行业继续更严重地依赖于数值模拟作为一种工具,以改善他们的产品设计。 在CFD发展的早期,数值求解Navier-Stokes方程的有限差分方法非常流行,并且仍然是许多研究代码的基础。 然而,由于它们依赖于结构化网格系统,它们对复杂和高度不规则域中流动的适用性受到严重限制。 这是有限体积求解器流行的主要原因,特别是在商业CFD代码中。 这项研究的目的是开发一种创新的有限差分方法,可以应用于任意网格,无论网格是结构化的,非结构化的或混合的,以及多物理现象。 这项研究的动机是将这种方法应用于真实的工程流问题的好处,由于其领域的复杂性,通常需要使用非结构化网格。 对于此类网格使用有限差分求解器的优点包括有限差分方法比有限体积和有限元方法更有效,更容易分析和编码,并且提供了更大的机会来实现更准确的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barron, Ronald其他文献

Barron, Ronald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barron, Ronald', 18)}}的其他基金

Development and Implementation of Algorithms for Large-Scale CFD and Data Analytics
大规模 CFD 和数据分析算法的开发和实施
  • 批准号:
    RGPIN-2022-05386
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Enhanced Cooling Channel Performance in Injection Molds
增强注塑模具的冷却通道性能
  • 批准号:
    521283-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
  • 批准号:
    RGPIN-2016-06768
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
A unified finite difference formulation for multiphysics simulations on arbitrary meshes
任意网格上多物理场仿真的统一有限差分公式
  • 批准号:
    4484-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
User-friendly robust unified CFD and multiphysics simulation tool
用户友好、强大的统一 CFD 和多物理场仿真工具
  • 批准号:
    470603-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Idea to Innovation

相似国自然基金

Whitham调制理论在色散方程间断初值问题中的应用
  • 批准号:
    12001556
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
  • 批准号:
    568474-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postdoctoral Fellowships
Slender body theory and finite difference computations to characterize particle-fluid interactions at moderate Reynolds numbers
细长体理论和有限差分计算来表征中等雷诺数下的颗粒-流体相互作用
  • 批准号:
    2206851
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
  • 批准号:
    1933548
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Octree-Based Finite Difference Methods for Efficient Fluid Animation
基于八叉树的高效流体动画有限差分方法
  • 批准号:
    544837-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel High Order Accurate Finite Difference Schemes Constructed via Superconvergence of Finite Element Methods
有限元超收敛构造的新型高阶精确有限差分格式
  • 批准号:
    1913120
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Redundancy, retiming and data flow in compiling finite-difference applications for manycore architectures
为众核架构编译有限差分应用程序时的冗余、重定时和数据流
  • 批准号:
    2293810
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Studentship
Simulating Dynamical Systems in 3 Dimensions with Finite Difference Methods
使用有限差分法模拟 3 维动态系统
  • 批准号:
    526759-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    University Undergraduate Student Research Awards
Estimation of strong ground motion using accurate and efficient mesh-free finite-difference method
使用准确高效的无网格有限差分法估计强地面运动
  • 批准号:
    17K06531
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the next-generation vibroacoustic finite-difference time-domain method and application to the floor vibration simulation
下一代振动声学时域有限差分方法的发展及其在地板振动模拟中的应用
  • 批准号:
    17K14774
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Aeroelastic Tailoring of Low Speed Aircraft through an Implicit Finite Difference Method
通过隐式有限差分法对低速飞机进行气动弹性剪裁
  • 批准号:
    511105-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了