Development and Implementation of Algorithms for Large-Scale CFD and Data Analytics
大规模 CFD 和数据分析算法的开发和实施
基本信息
- 批准号:RGPIN-2022-05386
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The term "Data Analytics" broadly refers to the multidisciplinary science of extracting meaningful conclusions from raw data. Such data-driven analyses have become an integral component in many application areas such as finance, e-commerce, weather predictions, healthcare, fraud detection, social media platforms, etc. Computational Fluid Dynamics (CFD) is one of the tools that engineers use to generate large datasets of information from which they attempt to predict the behaviour of complex fluid flows. In the last decade, CFD researchers have begun to exploit the power of data analytics in several application areas, such as turbulence modelling, uncertainty analysis and shape optimization. The need for user-friendly, reliable and computationally efficient methodologies and algorithms for seamless integration of large-scale CFD and Data Analytics has increased as industries continue to rely more heavily on numerical simulation as a tool to improve their product design. The overall aim of the proposed research is to combine the power of artificial intelligence (AI) and physics-based digital simulations to develop an innovative and robust unified framework for applying Data Analytics methods in CFD, particularly to fluid flows of industrial interest. To gain a thorough understanding and formulate an end-to-end methodology, high-fidelity CFD simulations will be conducted for several benchmark flow problems to produce typical large datasets of flow parameters. For this purpose, we will extend our research on simulating fluid flows in complex geometries using the Cartesian cut-stencil finite difference formulation of the 3D Navier-Stokes equations. Keeping in mind the desired integration of CFD and AI, our in-house CFD code will generate data in specialized formats that conform to the requirements of the AI algorithms. These datasets will be used to train and test various neural networks to access the strengths and weaknesses of different architectures. In parallel, various statistical and machine learning methods will be investigated to determine their applicability in fluid mechanics predictions and other areas of engineering science.
“数据分析”一词泛指从原始数据中提取有意义结论的多学科科学。这种数据驱动的分析已经成为许多应用领域不可或缺的组成部分,如金融、电子商务、天气预测、医疗保健、欺诈检测、社交媒体平台等。计算流体动力学(CFD)是工程师用来生成大型信息数据集的工具之一,他们试图从中预测复杂流体流动的行为。在过去的十年中,CFD研究人员已经开始在几个应用领域利用数据分析的力量,如湍流建模、不确定性分析和形状优化。随着行业继续更多地依赖数值模拟作为改进产品设计的工具,对大规模CFD和数据分析无缝集成的用户友好、可靠和计算效率高的方法和算法的需求不断增加。拟议研究的总体目标是将人工智能(AI)的力量与基于物理的数字模拟相结合,开发一个创新且强大的统一框架,用于将数据分析方法应用于CFD,特别是工业感兴趣的流体流动。为了深入了解并制定端到端方法,将对几个基准流动问题进行高保真CFD模拟,以产生典型的大型流动参数数据集。为此,我们将扩展我们的研究,利用三维Navier-Stokes方程的笛卡尔切割模板有限差分公式来模拟复杂几何中的流体流动。考虑到CFD和AI的理想集成,我们的内部CFD代码将以符合AI算法要求的专用格式生成数据。这些数据集将用于训练和测试各种神经网络,以获取不同架构的优点和缺点。同时,将研究各种统计和机器学习方法,以确定它们在流体力学预测和其他工程科学领域的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barron, Ronald其他文献
Barron, Ronald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barron, Ronald', 18)}}的其他基金
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
- 批准号:
RGPIN-2016-06768 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
- 批准号:
RGPIN-2016-06768 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
- 批准号:
RGPIN-2016-06768 - 财政年份:2019
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
- 批准号:
RGPIN-2016-06768 - 财政年份:2018
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Enhanced Cooling Channel Performance in Injection Molds
增强注塑模具的冷却通道性能
- 批准号:
521283-2017 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Engage Grants Program
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
- 批准号:
RGPIN-2016-06768 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Development of CFD Cut-Stencil Technology for Highly Complex Domains
针对高度复杂领域的 CFD 切割模板技术的开发
- 批准号:
RGPIN-2016-06768 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
A unified finite difference formulation for multiphysics simulations on arbitrary meshes
任意网格上多物理场仿真的统一有限差分公式
- 批准号:
4484-2011 - 财政年份:2015
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
A unified finite difference formulation for multiphysics simulations on arbitrary meshes
任意网格上多物理场仿真的统一有限差分公式
- 批准号:
4484-2011 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
User-friendly robust unified CFD and multiphysics simulation tool
用户友好、强大的统一 CFD 和多物理场仿真工具
- 批准号:
470603-2014 - 财政年份:2014
- 资助金额:
$ 2.33万 - 项目类别:
Idea to Innovation
相似海外基金
Development and Implementation of Real World Scale Artificial Evolutionary Algorithms
现实世界规模人工进化算法的开发和实施
- 批准号:
20K11967 - 财政年份:2020
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The development and implementation of polygenic risk scoring algorithms for stratifying individuals for future cognitive decline due to Alzheimer's Disease in non-symptomatic and early cognitive impaired subjects
开发和实施多基因风险评分算法,用于对无症状和早期认知受损受试者中因阿尔茨海默氏病导致的未来认知能力下降进行分层
- 批准号:
104210 - 财政年份:2018
- 资助金额:
$ 2.33万 - 项目类别:
Collaborative R&D
Development, Optimization and Implementation of New Algorithms for Improving the Resolution of EM, Acoustic and fMRI Reconstructions
提高电磁、声学和功能磁共振成像重建分辨率的新算法的开发、优化和实施
- 批准号:
RGPIN-2016-03652 - 财政年份:2016
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Development and implementation of algorithms for massively parallel quantum chemistry calculations
大规模并行量子化学计算算法的开发和实现
- 批准号:
25730079 - 财政年份:2013
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development and implementation of algorithms to process the full-matrix data captured using ultrasonic phased arrays for non destructive testing
开发和实施算法来处理使用超声波相控阵捕获的全矩阵数据进行无损检测
- 批准号:
411252-2010 - 财政年份:2012
- 资助金额:
$ 2.33万 - 项目类别:
Industrial R&D Fellowships (IRDF)
Development and implementation of efficient decoding algorithms for linear block codes
线性分组码高效解码算法的开发和实现
- 批准号:
221415220 - 财政年份:2012
- 资助金额:
$ 2.33万 - 项目类别:
Research Grants
A study on development and implementation of shrinkage estimation algorithms for dynamic systems
动态系统收缩估计算法的开发与实现研究
- 批准号:
23510171 - 财政年份:2011
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and implementation of algorithms to process the full-matrix data captured using ultrasonic phased arrays for non destructive testing
开发和实施算法来处理使用超声波相控阵捕获的全矩阵数据进行无损检测
- 批准号:
411252-2010 - 财政年份:2011
- 资助金额:
$ 2.33万 - 项目类别:
Industrial R&D Fellowships (IRDF)
Development, implementation and applications of fundamental algorithms, relying on Gröbner bases in free associative algebras
依赖于自由联想代数中的 Gröbner 基础的基础算法的开发、实现和应用
- 批准号:
171336129 - 财政年份:2010
- 资助金额:
$ 2.33万 - 项目类别:
Priority Programmes
Development and implementation of digital control for electric machine drives incorporating intelligent algorithms
结合智能算法的电机驱动数字控制的开发和实施
- 批准号:
249556-2003 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




