"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
基本信息
- 批准号:36739-2012
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No two maple leaves are alike and neither are two snow flakes. However, nobody will mistake the former for the latter. This simple metaphor is at the basis of the deformation and classification theory of mathematical structures. Given an algebraic or geometric object that is specified by axioms, structural data, or equations, what remains of the structure and which aspects change if one (slightly) varies the defining parameters? The instruments and techniques mathematicians employ to answer these questions are contained in the ever expanding toolbox of homological algebra, which strives to classify that which is of equal shape or form, i.e. ``homological''.
A coarse classification is usually obtained through discrete invariants, such as a dimension that may correspond to the number of spikes of a leaf; a finer one may necessitate continuously varying moduli that can be numbers again or manifest themselves through simpler structures. The metaphorical analogue here could be the shade of colour of a leaf. A deep fact of nature is that snow flakes have six spikes and that nothing with sevenfold symmetry can ever be a snow flake. Homological Algebra aims at similar fundamental results: the hunt for invariants and moduli employs highly abstract concepts such as triangulated categories, deformation groupoids, or controlling differential graded Lie algebras, leading to structures that have a simple general definition, but are difficult to exploit in any given concrete case. One thus looks for more manageable secondary invariants, among them cohomology groups, obstruction theories or concrete geometric objects such as discriminants or Frobenius structures. Applications range from classification theory in Algebra to fundamental questions in Geometry and Physics.
没有两片枫叶是一样的,两片雪花也是一样的。然而,没有人会把前者误认为后者。这个简单的隐喻是数学结构变形和分类理论的基础。给出一个由公理、结构数据或方程指定的代数或几何对象,如果一个人(稍微)改变定义参数,结构的哪些剩余部分和哪些方面会发生变化?数学家用来回答这些问题的工具和技术包含在不断扩大的同调代数工具箱中,该工具箱致力于对具有相同形状或形式的东西进行分类,即“同调”。
粗略的分类通常通过离散的不变量来获得,例如可以对应于叶子的穗数的维度;更精细的分类可能需要连续变化的模数,这些模数可以是数字,或者通过更简单的结构表现出来。这里比喻的比喻可能是树叶的颜色。自然界的一个深刻事实是,雪花有六个尖刺,七重对称的东西永远不可能成为雪花。同调代数的目标是类似的基本结果:寻找不变量和模使用了高度抽象的概念,如三角范畴、变形群胚或控制微分分次李代数,导致结构具有简单的一般定义,但在任何给定的具体情况下都很难利用。因此,人们寻找更容易管理的次级不变量,其中包括上同调群、障碍理论或具体的几何对象,如判别式或Frobenius结构。应用范围从代数中的分类理论到几何和物理中的基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Buchweitz, RagnarOlaf其他文献
Buchweitz, RagnarOlaf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Buchweitz, RagnarOlaf', 18)}}的其他基金
Applications of Homological Algebra in Algebra, Geometry, and Physics
同调代数在代数、几何和物理中的应用
- 批准号:
RGPIN-2017-06572 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Applications of Homological Algebra in Algebra, Geometry, and Physics
同调代数在代数、几何和物理中的应用
- 批准号:
RGPIN-2017-06572 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
- 批准号:
36739-2012 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
- 批准号:
36739-2012 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
- 批准号:
36739-2012 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
- 批准号:
36739-2012 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Homological methods in algebra and geometry
代数和几何中的同调方法
- 批准号:
36739-2007 - 财政年份:2011
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Homological methods in algebra and geometry
代数和几何中的同调方法
- 批准号:
36739-2007 - 财政年份:2010
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Homological methods in algebra and geometry
代数和几何中的同调方法
- 批准号:
36739-2007 - 财政年份:2009
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Homological methods in algebra and geometry
代数和几何中的同调方法
- 批准号:
36739-2007 - 财政年份:2008
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Monoidal categories, homological algebra, and applications
幺半群范畴、同调代数及其应用
- 批准号:
RGPIN-2020-05140 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Monoidal categories, homological algebra, and applications
幺半群范畴、同调代数及其应用
- 批准号:
RGPIN-2020-05140 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Monoidal categories, homological algebra, and applications
幺半群范畴、同调代数及其应用
- 批准号:
RGPIN-2020-05140 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Applications of Homological Algebra in Algebra, Geometry, and Physics
同调代数在代数、几何和物理中的应用
- 批准号:
RGPIN-2017-06572 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory
交换代数的同调方面及其在模表示理论中的应用
- 批准号:
1700985 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Applications of Homological Algebra in Algebra, Geometry, and Physics
同调代数在代数、几何和物理中的应用
- 批准号:
RGPIN-2017-06572 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
- 批准号:
36739-2012 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
- 批准号:
36739-2012 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
- 批准号:
36739-2012 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
"Applications of Homological Algebra in Algebra, Geometry, and Physics"
“同调代数在代数、几何和物理中的应用”
- 批准号:
36739-2012 - 财政年份:2012
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




