Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory

交换代数的同调方面及其在模表示理论中的应用

基本信息

  • 批准号:
    1700985
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

One of the myriad functions of mathematics is to provide language to formulate, and tools to solve, equations that describe the physical world. Often these equations are algebraic in nature, such as those describing lines, circles, and parabolas. Typically, the equations have infinitely many solutions -- think about the equation defining a circle -- and it is usually not possible to write down a complete list of solutions. Rather, the objective is to find ways to study the structure of the collection of the solution set, which is called a variety. A fruitful approach has been to consider the (algebraic) functions on the variety. One part of this research project addresses questions that have emerged in this endeavor. Mathematics has also been remarkably successful in describing and studying phenomenon related to symmetry. This leads to a mathematical structure called a group. Intriguingly, in certain contexts, there is a way to attach a variety to a group, and in the past few years various researchers, including the investigator, have been able to solve problems related to groups using tools that had been developed to study varieties. A part of the current project deals with these aspects.This research is rooted in commutative algebra, with applications also to the representation theory of finite group schemes in positive characteristic. The first part of the project concerns the homological aspects of modules over commutative rings. The problems posed range from those that have arisen from the internal developments in the subject to ones inspired by recent advances in the broader mathematical context, notably the representation theory of algebras and homotopy theory. The focus in the second part of the project is on the Hochschild cohomology of commutative algebras. Classically, Hochschild cohomology has been of interest for it is one of two main cohomology theories that capture properties of the diagonal morphism. A different aspect of Hochschild cohomology has begun to play an increasingly important role: Its action on derived categories, and various triangulated categories. The problems proposed in the second part of the project address both aspects. In recent years, notions and techniques from commutative ring theory have proved to be remarkably effective in solving problems in, and shedding new light on, the representation theory of finite groups over a field of positive characteristic. This project will develop these connections in new directions.
数学的众多功能之一是提供语言来制定,并提供工具来解决描述物理世界的方程。通常这些方程本质上是代数方程,例如描述直线、圆和抛物线的方程。通常,方程有无穷多个解--想想定义一个圆的方程--通常不可能写下一个完整的解列表。相反,目标是找到研究解集集合的结构的方法,这被称为一个品种。一个富有成效的方法一直认为(代数)功能的品种。本研究项目的一部分解决了在这一奋进中出现的问题。数学在描述和研究与对称性有关的现象方面也取得了显著的成功。这就产生了一种称为群的数学结构。有趣的是,在某些情况下,有一种方法可以将品种与群体联系起来,在过去的几年里,包括调查者在内的各种研究人员已经能够使用为研究品种而开发的工具来解决与群体有关的问题。本项目的一部分涉及这些方面。这项研究是植根于交换代数,也与应用程序的表示理论的有限群计划的积极特征。该项目的第一部分涉及交换环上的模的同调方面。所提出的问题范围从那些已经出现的内部发展的主题的启发,最近的进展,在更广泛的数学背景下,特别是表示理论的代数和同伦理论。该项目的第二部分的重点是交换代数的Hochschild上同调。经典上,Hochschild上同调一直是人们感兴趣的,因为它是捕获对角态射性质的两个主要上同调理论之一。Hochschild上同调的另一个方面已经开始发挥越来越重要的作用:它对派生范畴和各种三角范畴的作用。本项目第二部分提出的问题涉及这两个方面。近年来,交换环理论的概念和技巧在解决正特征域上有限群的表示论问题上被证明是非常有效的,并为它提供了新的启发。该项目将在新的方向上发展这些联系。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Openness of the Regular Locus and Generators for Module Categories
模块类别正则轨迹和生成器的开放性
  • DOI:
    10.1007/s40306-018-0294-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Iyengar, Srikanth B.;Takahashi, Ryo
  • 通讯作者:
    Takahashi, Ryo
Base change along the Frobenius endomorphism and the Gorenstein property
  • DOI:
    10.1016/j.jalgebra.2021.12.001
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Pinches Dirnfeld
  • 通讯作者:
    Pinches Dirnfeld
The Nakayama functor and its completion for Gorenstein algebras
Rigid Ideals in Gorenstein Rings of Dimension One
  • DOI:
    10.1007/s40306-018-00315-0
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    C. Huneke;S. Iyengar;R. Wiegand
  • 通讯作者:
    C. Huneke;S. Iyengar;R. Wiegand
Locally Complete Intersection Maps and the Proxy Small Property
局部完整的交叉路口地图和代理小属性
  • DOI:
    10.1093/imrn/rnab041
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Briggs, Benjamin;Iyengar, Srikanth B;Letz, Janina C;Pollitz, Josh
  • 通讯作者:
    Pollitz, Josh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srikanth Iyengar其他文献

Fully Automated Agatston Score Calculation From Electrocardiography-Gated Cardiac Computed Tomography Using Deep Learning and Multi-Organ Segmentation: A Validation Study.
使用深度学习和多器官分割从心电图门控心脏计算机断层扫描全自动计算 Agatston 评分:一项验证研究。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Ashish Gautam;Prashant Raghav;Vijay Subramaniam;Sunil Kumar;Sudeep Kumar;Dharmendra Jain;Ashish Verma;Parminder Singh;Manphoul Singhal;Vikash Gupta;S. Rathore;Srikanth Iyengar;Sudhir Rathore
  • 通讯作者:
    Sudhir Rathore
Class and rank of differential modules THANKSREF="*" ID="*"Research partly supported by NSF grant DMS 0201904 (L.L.A.), NSERC grant 3-642-114-80 (R.O.B.), and NSF grant DMS 0442242 (S.I.).
  • DOI:
    10.1007/s00222-007-0041-6
  • 发表时间:
    2007-03-07
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Luchezar L. Avramov;Ragnar-Olaf Buchweitz;Srikanth Iyengar
  • 通讯作者:
    Srikanth Iyengar

Srikanth Iyengar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srikanth Iyengar', 18)}}的其他基金

Local Algebra and Local Representation Theory
局部代数和局部表示论
  • 批准号:
    2001368
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Conference Proposal: Geometric and topological aspects of the representation theory of finite groups
会议提案:有限群表示论的几何和拓扑方面
  • 批准号:
    1624050
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra
会议提案:表示论、代数拓扑学和交换代数之间的相互作用
  • 批准号:
    1501399
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
  • 批准号:
    1503044
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
  • 批准号:
    1123059
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
  • 批准号:
    1201889
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Derived categories of complete intersections and Hochschild cohomology
完全交集和 Hochschild 上同调的派生范畴
  • 批准号:
    0903493
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Derived invariants of commutative rings
交换环的导出不变量
  • 批准号:
    0602498
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
  • 批准号:
    0442242
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
  • 批准号:
    0302892
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
  • 批准号:
    60503032
  • 批准年份:
    2005
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
  • 批准号:
    2903280
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
  • 批准号:
    2340195
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
  • 批准号:
    23K01192
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
  • 批准号:
    2882187
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
  • 批准号:
    23K00265
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Aspects of Polish group dynamics
波兰团体动态的各个方面
  • 批准号:
    2246873
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
  • 批准号:
    2332366
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
  • 批准号:
    2315822
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了