"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"

“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”

基本信息

  • 批准号:
    41981-2012
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Almost 200 years ago E. Galois discovered a brilliant idea to study symmetries as one object, and in this way, to solve fundamental and seemingly intractible problems related to given mathematical structures. Today Galois theory is a central part of current mathematics. However some basic problems in Galois theory are still open. There are so many groups of symmetries that there became a desire to build enormous observing towers from which one could see all of these groups of symmetries. These towers are called absolute Galois groups. If one knew some special properties of absolute Galois groups, one would obtain a master key to many secret rooms of current mathematics. Remarkable progress was completed during the last 30 years by A. Merkurjev, M. Rost, A. Suslin, and V. Voevodsky, on obtaining very specific information in terms of cohomological invariants of absolute Galois groups. Thus we now have powerful information about absolute Galois groups, but it is encoded in the language of cohomology. The main objective of this proposed research is to decode some of the powerful information into down-to-earth descriptions of absolute Galois groups. In recent joint work with D. Benson, S. Chebolu, I. Efrat, J. Labute, N. Lemire and J. Swallow; we have found certain and various small quotients of absolute Galois groups. These groups can be viewed as foundations of our towers and now it is time to climb higher and to classify larger quotients of Galois groups. Based on joint work with M. Spira, and more recent work with A. Adem, D. Benson, I. Efrat, N. Lemire, A. Schultz and J. Swallow, on the interplay between topology, modular representation theory and the Galois module structure of Galois cohomology, we plan to provide further significant information about absolute Galois groups, and to apply it to the solution of basic problems in pure mathematics. Number theory and related topics in Canada are internationally well regarded. It is hoped that this project will contribute to sustaining this high standard and tradition in Canada.
大约200年前,E.Galois发现了一个绝妙的想法,将对称性作为一个对象来研究,并以这种方式解决与给定的数学结构相关的基本和看似复杂的问题。今天,伽罗瓦理论是现代数学的核心部分。然而,伽罗瓦理论中的一些基本问题仍然悬而未决。有如此多的对称组,以至于人们渴望建造巨大的观察塔,从那里人们可以看到所有这些对称组。这些塔被称为绝对伽罗瓦群。如果一个人知道绝对伽罗瓦群的一些特殊性质,他就会获得一把通向当今数学的许多密室的万能钥匙。在过去的30年里,A.Merkurjev、M.Rost、A.Suslin和V.Voevodsky在获得绝对Galois群的上同调不变量方面取得了显著的进展。因此,我们现在有了关于绝对伽罗瓦群的强大信息,但它是用上同调语言编码的。这项拟议研究的主要目的是将一些强大的信息解码成对绝对伽罗瓦群的切合实际的描述。在最近与D.Benson,S.Chebolu,I.Efrat,J.LaBant,N.Lemire和J.Swallow的联合工作中,我们发现了绝对Galois群的某些和各种小商。这些群可以被视为我们的塔楼的基础,现在是时候爬得更高了,并对更大的伽罗瓦群的商进行分类。基于与M.Spira的合作,以及最近与A.Adem、D.Benson、I.Efrat、N.Lemire、A.Schultz和J.Swallow关于拓扑、模表示理论和Galois上同调的Galois模结构之间的相互作用的工作,我们计划提供关于绝对Galois群的更多有意义的信息,并将其应用于解决纯数学中的基本问题。加拿大的数论及相关话题在国际上备受推崇。希望该项目将有助于在加拿大保持这一高标准和传统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minac, Jan其他文献

Algebraic approach to the Kuramoto model
  • DOI:
    10.1103/physreve.104.l022201
  • 发表时间:
    2021-08-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Muller, Lyle;Minac, Jan;Nguyen, Tung T.
  • 通讯作者:
    Nguyen, Tung T.

Minac, Jan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minac, Jan', 18)}}的其他基金

Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
  • 批准号:
    41981-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
  • 批准号:
    41981-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
  • 批准号:
    41981-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
  • 批准号:
    41981-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Sylow-p subgroups of absolute galois groups, representation theory, and galois cohomology
绝对伽罗瓦群的 Sylow-p 子群、表示论和伽罗瓦上同调
  • 批准号:
    41981-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

The Apocalypse of QAnon: What is the relationship between prophecy and violence in the subgroups of the Q Movement?
QAnon 的启示录:Q 运动各分支中的预言和暴力之间有何关系?
  • 批准号:
    2903652
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Studentship
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
  • 批准号:
    10734357
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Complex WTC Exposures Impacting Persistent Large and Small Airflow Limitation and Vulnerable Subgroups in the WTC Survivor Population
复杂的世贸中心暴露影响了世贸中心幸存者群体中持续的大、小气流限制和弱势群体
  • 批准号:
    10749125
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Dissecting functional subgroups and closed-loop circuits between the pedunculopontine nucleus and the basal ganglia
解剖桥脚核和基底神经节之间的功能亚组和闭环回路
  • 批准号:
    10677467
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Net Clinical Benefit and Cost-Effectiveness of Indefinite Anticoagulation Among Clinically Relevant Subgroups of Patients with First Unprovoked Venous Thromboembolism
首次无端静脉血栓栓塞临床相关亚组患者无限期抗凝的净临床效益和成本效益
  • 批准号:
    493128
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Mapping the Cerebellar Origins of Medulloblastoma Subgroups
绘制髓母细胞瘤亚群的小脑起源图
  • 批准号:
    10587809
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Quantum Subgroups of the Low Rank Lie Algebras
低阶李代数的量子子群
  • 批准号:
    2245935
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
The impact of clinical interventions for sepsis in routine care and among detailed patient subgroups: A novel approach for causal effect estimation in electronic health record data
脓毒症临床干预措施对常规护理和详细患者亚组的影响:电子健康记录数据因果效应估计的新方法
  • 批准号:
    10686093
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
Examining the Integrative Effects of Adolescent, Parent, Provider, and Practice Level Factors on Adolescents' HPV Vaccine Uptake across Six Asian American Subgroups
检查青少年、家长、提供者和实践水平因素对六个亚裔美国人亚群体青少年 HPV 疫苗接种的综合影响
  • 批准号:
    10371334
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
Multicolor cell imaging analysis of lipid droplet subgroups using functional carbon dots
使用功能碳点对脂滴亚群进行多色细胞成像分析
  • 批准号:
    22F22408
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了