Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
基本信息
- 批准号:46179-2013
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective is to advance the understanding of nonlinear partial differential equations (PDEs); in particular, evolution equations that describe wave phenomena relevant to physical processes arising in fluid dynamics, nonlinear optics and plasma physics. I work in two main directions:
1. The theory of ocean waves. Many aspects of mathematical analysis and applied mathematics were originally motivated by the study of fluid dynamics, and in particular currents and waves in bodies of water. In turn, mathematics is important to understand the dynamics of the earth's oceans, and is central to prediction of ocean waves and currents and their effect on weather and climate. My research proposal on ocean waves has two components: (i) mathematical analysis of the PDEs for free surface water waves. (ii) projects with an applied mathematics perspective; important topics include large amplitude nonlinear wave interactions and wave propagation over rough bottom topography.
2. Nonlinear waves in optics and plasmas: The nonlinear Schroedinger (NLS) equation is a canonical equation that appears in many fields of physics. It arises ubiquitously as a model for the envelope dynamics of waves and is used frequently in optics, plasmas and fluids. In quantum physics, it arises as a mean field equation for a many-body boson system in a confining potential and for Bose-Einstein condensation in dilute gases. My research proposal concerns NLS type equations of physical relevance such as the Derivative NLS equation for dispersive Alfven waves and the Zakharov system for Langmuir turbulence. My work concentrates on two central phenomena of nonlinear dynamics: (i) existence and stability of solitary waves; (ii) `self-focusing' or `wave collapse' associated to the blow-up of solutions and its counterpart, wellposedness and long-time dynamics.
其目标是促进对非线性偏微分方程(PDE)的理解;特别是描述与流体动力学、非线性光学和等离子体物理学中出现的物理过程相关的波动现象的演化方程。我的工作主要有两个方向:
1.海浪理论。数学分析和应用数学的许多方面最初是由流体动力学的研究,特别是水流和水体中的波浪。反过来,数学对于理解地球海洋的动力学非常重要,并且对于预测海浪和洋流及其对天气和气候的影响至关重要。我关于海浪的研究计划有两个组成部分:(i)自由水面波浪偏微分方程的数学分析。(ii)项目与应用数学的角度;重要的课题包括大振幅非线性波的相互作用和波传播粗糙的底部地形。
2.光学和等离子体中的非线性波:非线性薛定谔(NLS)方程是出现在许多物理领域的正则方程。它作为波的包络动力学的模型无处不在,并且经常用于光学,等离子体和流体。在量子物理学中,它作为一个平均场方程出现,用于限制势中的多体玻色子系统和稀气体中的玻色-爱因斯坦凝聚。我的研究计划涉及NLS型方程的物理相关性,如色散阿尔芬波的导数NLS方程和朗缪尔湍流的Zakharov系统。我的工作集中在非线性动力学的两个中心现象:(一)孤立波的存在性和稳定性;(二)“自聚焦”或“波崩溃”与爆破的解决方案和它的对应物,适定性和长时间动态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sulem, Catherine其他文献
Sulem, Catherine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sulem, Catherine', 18)}}的其他基金
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
- 批准号:
46179-2013 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
- 批准号:
46179-2013 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
- 批准号:
46179-2013 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
- 批准号:
46179-2013 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear dispersive partial differential equations: wave propagation in fluids, optics and plasmas
非线性色散偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
46179-2011 - 财政年份:2012
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
- 批准号:
RGPIN-2017-04313 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant