Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
基本信息
- 批准号:RGPIN-2018-04536
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective is to advance the understanding of nonlinear partial differential equations (PDEs); in particular, evolution equations that describe wave phenomena relevant to physical processes arising in fluid dynamics, nonlinear optics and plasma physics.
1. The theory of ocean waves. Many aspects of mathematical analysis and applied mathematics were originally motivated by the study of fluid dynamics, and in particular currents and waves in bodies of water. In turn, mathematics is important to understand the dynamics of the earth's oceans, and is central to prediction of ocean waves and currents and their effect on weather and climate. My research proposal on ocean waves has two components: (i) mathematical analysis of the PDEs for free surface water waves starting from the classical questions of existence and regularity of solutions and continuing with a more detailed phase space analysis of the evolution of solutions; (ii) projects with an applied mathematics perspective: topics include large amplitude nonlinear wave interactions and wave propagation over rough bottom topography.
Modeling of ocean waves has been an active area of research for at least 150 years. At a broader level, the topic has gained an increased interest due to the importance in establishing a better understanding of ocean waves within the larger scientific community, in particular because of the relatively poorly understood natural hazards such as seismically generated tsunamis and the occurrence of rogue waves.
2. Nonlinear waves in optics and plasmas. The nonlinear Schrödinger (NLS) equation is a canonical equation that appears in many fields of physics. It arises ubiquitously as a model for the envelope dynamics of waves and is used frequently in optics, plasmas and fluids. In quantum physics, it arises as a mean field equation for a many-body boson system in a confining potential and for Bose-Einstein condensation in dilute gases. My research proposal concerns NLS type equations of physical relevance such as the Derivative NLS equation for dispersive Alfvén waves and the Zakharov system for Langmuir turbulence in plasmas. My work concentrates on two central phenomena of nonlinear dynamics: (i) self-focusing or wave collapse associated to the blow-up of solutions, and its counterpart, wellposedness and long-time dynamics; (ii) the dynamics of solitary waves, their long-time stability and the so-called soliton resolution that refers to the property that the solution decomposes into a finite sum of separated solitons and a radiative part as time goes to infinity.
My proposal combines motivation from physical problems and techniques from modern analysis. It involves several approaches, ranging from mathematical analysis including dynamical systems, harmonic analysis and spectral theory, to formal asymptotic expansions and numerical simulations.
其目的是促进对非线性偏微分方程组的理解,特别是描述与流体力学、非线性光学和等离子体物理中的物理过程相关的波动现象的演化方程。
1.海浪理论。数学分析和应用数学的许多方面最初是由流体动力学的研究推动的,特别是水体中的水流和波浪。反过来,数学对于理解地球海洋的动态是重要的,对于预测海浪和洋流及其对天气和气候的影响是至关重要的。我对海浪的研究建议有两个部分:(I)从解的存在性和正则性的经典问题出发,继续对解的演变进行更详细的相空间分析,对自由表面水波的偏微分方程组进行数学分析;(Ii)从应用数学的角度进行项目:主题包括大振幅非线性波相互作用和粗糙海底地形上的波传播。
至少150年来,海浪模型一直是一个活跃的研究领域。在更广泛的层面上,由于在更大的科学界内建立对海浪的更好了解的重要性,特别是由于相对较少了解的自然灾害,如地震引发的海啸和无赖海浪的发生,这一专题获得了更大的兴趣。
2.光学和等离子体中的非线性波。非线性薛定谔(NLS)方程是一个出现在许多物理领域的正则方程。它是波包络动力学的一种普遍存在的模型,广泛应用于光学、等离子体和流体等领域。在量子物理学中,它是作为禁闭势中的多体玻色子系统和稀薄气体中的玻色-爱因斯坦凝聚的平均场方程出现的。我的研究建议涉及NLS型物理关联方程,如色散Alfvén波的导数NLS方程和等离子体中朗缪尔湍流的Zakharov系统。我的工作集中在非线性动力学的两个中心现象上:(I)与解的爆破有关的自聚焦或波崩溃,以及与之对应的健康和长时间动力学;(Ii)孤立波的动力学,它们的长期稳定性和所谓的孤子分辨,它指的是解随着时间的推移分解成分离的孤子和辐射部分的有限和的性质。
我的建议结合了来自物理问题的动机和来自现代分析的技术。它涉及几种方法,从数学分析,包括动力系统,调和分析和谱理论,到形式渐近展开和数值模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sulem, Catherine其他文献
Sulem, Catherine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sulem, Catherine', 18)}}的其他基金
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations: Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
RGPIN-2018-04536 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
- 批准号:
46179-2013 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
- 批准号:
46179-2013 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
- 批准号:
46179-2013 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
- 批准号:
46179-2013 - 财政年份:2014
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Partial Differential Equations; Applications to Wave Propagation in Fluids, Optics and Plasmas
非线性偏微分方程;
- 批准号:
46179-2013 - 财政年份:2013
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear dispersive partial differential equations: wave propagation in fluids, optics and plasmas
非线性色散偏微分方程:流体、光学和等离子体中的波传播
- 批准号:
46179-2011 - 财政年份:2012
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant














{{item.name}}会员




