Dynamical Riemannian Geometry of Natural Systems

自然系统的动态黎曼几何

基本信息

  • 批准号:
    121857-2011
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Geometry plays an important role in understanding many natural processes. This proposal will study how Riemannian geometry contributes to the evolution of two different dynamical systems through the construction of mathematical models which are used to provide the basis for computer simulations. (1) A new mathematical model of plant growth has been constructed that couples the changes in the geometry of plant to the transport and deposition of the material required to make them increase in size and change morphology. The model has been tested in the case of the growth of blades of grass and corn roots with good agreement between the numerical simulations and the observations. The extension to two-dimensional objects will compare measurements made on the growth of tobacco and other leaves to determine what genetic and what environmental effects govern the growth and formation of structure in plant leaves and petals. In addition to performing the numerical simulations, the use of computer graphic techniques will be applied to produce a visualization of the growth process. (2) The formation of black holes having electric charge will be studied using the Einstein equations of general relativity. There are a number of issues that have yet to be fully resolved concerning the formation and stability of charged black holes. First it is known that the interior of a pre-existing charged black hole becomes unstable if matter or fields fall into it. The question of whether the structure of the pre-existing black hole is compatible with one that forms from the realistic collapse of a charge fluid will be studied using the methods of numerical relativity. The second question concerns the nature of the the collapse when it is at the boundary between collapse to a black hole and the formation of a spacetime without a black hole. These simulations will be the first to study as much of the complete spacetime as is possible.
几何在理解许多自然过程中起着重要作用。本提案将研究黎曼几何如何通过构建数学模型来促进两种不同动力系统的演变,这些模型用于为计算机模拟提供基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hobill, David其他文献

Hobill, David的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hobill, David', 18)}}的其他基金

The Dynamics of Riemannian Geometries
黎曼几何的动力学
  • 批准号:
    RGPIN-2017-04123
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The Dynamics of Riemannian Geometries
黎曼几何的动力学
  • 批准号:
    RGPIN-2017-04123
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The Dynamics of Riemannian Geometries
黎曼几何的动力学
  • 批准号:
    RGPIN-2017-04123
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The Dynamics of Riemannian Geometries
黎曼几何的动力学
  • 批准号:
    RGPIN-2017-04123
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
The Dynamics of Riemannian Geometries
黎曼几何的动力学
  • 批准号:
    RGPIN-2017-04123
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamical Riemannian Geometry of Natural Systems
自然系统的动态黎曼几何
  • 批准号:
    121857-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamical Riemannian Geometry of Natural Systems
自然系统的动态黎曼几何
  • 批准号:
    121857-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamical Riemannian Geometry of Natural Systems
自然系统的动态黎曼几何
  • 批准号:
    121857-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamical Riemannian Geometry of Natural Systems
自然系统的动态黎曼几何
  • 批准号:
    121857-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical studies in general relativity
广义相对论的数值研究
  • 批准号:
    121857-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Stochastic processes in sub-Riemannian geometry
亚黎曼几何中的随机过程
  • 批准号:
    2246817
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
  • 批准号:
    2203607
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
  • 批准号:
    RGPIN-2020-04225
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
  • 批准号:
    571975-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    University Undergraduate Student Research Awards
Volume-collapsed manifolds in Riemannian geometry and geometric inference
黎曼几何中的体积塌陷流形和几何推理
  • 批准号:
    MR/W01176X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Fellowship
CAREER: Rethinking Dynamic Wireless Networks through the Lens of Riemannian Geometry
职业:通过黎曼几何的视角重新思考动态无线网络
  • 批准号:
    2144297
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Minimal Filling Estimates in Riemannian Geometry
黎曼几何中的最小填充估计
  • 批准号:
    567948-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Geodesics in noncommutative Riemannian geometry
非交换黎曼几何中的测地线
  • 批准号:
    561794-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    University Undergraduate Student Research Awards
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
  • 批准号:
    RGPIN-2017-06068
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Minimal submanifolds in Riemannian geometry
黎曼几何中的最小子流形
  • 批准号:
    RGPIN-2020-04225
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了