Relation between Algebraic and Convex Geometries
代数几何和凸几何之间的关系
基本信息
- 批准号:156833-2012
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I plan to work on very different theories (as I always do): on my Topological Galois Theory which explains why some equations could not be solved by explicit formulas; on "Tropical Geometry" which allows to solve algebraic problems by analyzing planar diagrams; on my "Fewnomials Theory" whose ideology is that "simple" not cumbersome systems of equations should define sets, having "simple" topology (this theory proved to be very powerful) and on other theories.
But mainly I will concentrate on Theory of Newton-Okounkov Bodies. Recently with my former student K.Kaveh I have created this new surprising theory which connects algebra and geometry in a very unexpected and exiting way. This field grows very quickly. The main goal of my project is to complete our theory (including our version of the intersection theory), to unify different approaches, to make the theory simpler and to a large extent self-contained, to develop its local version, to study the case involving symmetries when the problem admits a group action. This huge program involves research in very different areas and suits perfectly to attract and to train young mathematicians. This research is of general interest for Pure Mathematics.
我计划研究非常不同的理论(就像我一直做的那样):关于我的拓扑伽罗瓦理论,它解释了为什么某些方程不能通过显式公式求解; “热带几何”允许通过分析平面图来解决代数问题;关于我的“少数项理论”,其思想是“简单”而不繁琐的方程组应该定义集合,具有“简单”拓扑(该理论被证明非常强大)以及其他理论。
但我将主要关注牛顿-奥孔科夫体理论。最近,我和我以前的学生 K.Kaveh 一起创造了这个令人惊讶的新理论,它以一种非常出乎意料和令人兴奋的方式将代数和几何联系起来。这个领域发展得非常快。我的项目的主要目标是完善我们的理论(包括我们版本的相交理论),统一不同的方法,使理论更简单并且在很大程度上是独立的,开发其本地版本,研究当问题承认群体行为时涉及对称性的情况。这个庞大的计划涉及非常不同领域的研究,非常适合吸引和培养年轻数学家。这项研究引起了纯数学界的普遍兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khovanskii, Askold其他文献
Khovanskii, Askold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khovanskii, Askold', 18)}}的其他基金
Convex Bodies, Fans and Algebraic Geometry
凸体、扇形和代数几何
- 批准号:
RGPIN-2017-05251 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Convex Bodies, Fans and Algebraic Geometry
凸体、扇形和代数几何
- 批准号:
RGPIN-2017-05251 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Convex Bodies, Fans and Algebraic Geometry
凸体、扇形和代数几何
- 批准号:
RGPIN-2017-05251 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Convex Bodies, Fans and Algebraic Geometry
凸体、扇形和代数几何
- 批准号:
RGPIN-2017-05251 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Convex Bodies, Fans and Algebraic Geometry
凸体、扇形和代数几何
- 批准号:
RGPIN-2017-05251 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Relation between Algebraic and Convex Geometries
代数几何和凸几何之间的关系
- 批准号:
156833-2012 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Relation between Algebraic and Convex Geometries
代数几何和凸几何之间的关系
- 批准号:
156833-2012 - 财政年份:2014
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Relation between Algebraic and Convex Geometries
代数几何和凸几何之间的关系
- 批准号:
156833-2012 - 财政年份:2013
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Relation between Algebraic and Convex Geometries
代数几何和凸几何之间的关系
- 批准号:
156833-2012 - 财政年份:2012
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and convex geometries, actions of reductive groups, topological galois theory
代数和凸几何、还原群的作用、拓扑伽罗瓦理论
- 批准号:
156833-2011 - 财政年份:2011
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
RGPIN-2022-03135 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Interactions between representation theory, algebraic geometry, and physics
表示论、代数几何和物理学之间的相互作用
- 批准号:
DGECR-2022-00437 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Launch Supplement
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Interactions between combinatorics, representation theory, and algebraic geometry
组合数学、表示论和代数几何之间的相互作用
- 批准号:
2265021 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Studentship
Interactions Between Representation Theory and Algebraic Geometry
表示论与代数几何之间的相互作用
- 批准号:
1707808 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
The links between algebraic coding theory and matroid theory
代数编码理论与拟阵理论之间的联系
- 批准号:
17K05348 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation between Algebraic and Convex Geometries
代数几何和凸几何之间的关系
- 批准号:
156833-2012 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Interactions between representation theory, Poisson algebras and differential algebraic geometry
表示论、泊松代数和微分代数几何之间的相互作用
- 批准号:
EP/N034449/1 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Research Grant
Difference between marginal likelihood and generalization error as statistical model evaluation based on algebraic geometry and structure learning theory
基于代数几何和结构学习理论的边际似然与泛化误差差异作为统计模型评价
- 批准号:
15K00331 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




