Stochastic Processes and Their Applications

随机过程及其应用

基本信息

  • 批准号:
    203089-2013
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

1) Herein, we postulate that the glacial cycles can be completely explained by carbon transfer between atmospheric, stored and buried states. This theory builds upon the glacial burial hypothesis as well as the greenhouse gas effect. We support our hypothesis by developing a closed stochastic model that can statistically reproduce the observed ice-core and ocean-sediment samples over the past two million years. We then use this model to explain: the relatively steeper rise out of glacial states as compared to recession into, the current extended Holocene interglacial epoch, and the somewhat mysterious change from the ancient 41ka world of shallower, higher frequency glacial cycles to the current 100ka world of deep cycles. 2) We will obtain representations for superprocesses (Measure-valued Markov processes here) beneficial to analysis and simulation alike. Superprocesses, in filtering theory, branching processes and population genetic, are a high-density, high-activity limit of particle processes. However, the limit looses: a) the particle representation and b) the joint distribution information (over different times). Kurtz and collaborators (Ocone, Donnelly, Xiong, Rodrigues) introduced levels and Markov mappings that allow an infinite collection of particles and their genealogy in the limit. However, this method is still more clever ideas than a unified theory. Separately, Billingsley studies the existence of probability measures corresponding to joint distributions but nobody has addressed the question: When is a superprocess the projection of a random measure on pathspace? We will investigate both representations and determine when there is no single pathspace random measure. 3) The spine decomposition and the representation approach are not panacea for strong laws of large numbers (SLLN) and large deviation principles (LDP) as many superprocesses lack the compact support property and stochastic equation representation respectively. In the 45 years since Watanabe's classical SLLN for branching Markov processes only isolated SLLN for superprocesses over Euclidean space been discovered. We will investigate SLLNs, CLTs, LDPs and LILs for superprocesses in terms of time and particle approximation.
1)在此,我们假设,冰川循环可以完全解释为大气,存储和埋藏状态之间的碳转移。这一理论建立在冰川埋藏假说和温室气体效应的基础上。我们通过开发一个封闭的随机模型来支持我们的假设,该模型可以在统计上重现过去200万年来观察到的冰芯和海洋沉积物样本。 然后,我们用这个模型来解释:相对陡峭的上升出冰川状态相比,衰退到,目前延长全新世间冰期,和有点神秘的变化,从古代41万年的世界较浅,更高频率的冰川循环到目前的100万年的世界深循环。 2)我们将获得超过程(这里是测度值马尔可夫过程)的表示,这对分析和模拟都是有益的。超过程在过滤理论、分支过程和种群遗传学中是一种高密度、高活动极限的粒子过程。然而,该限制失去了:a)粒子表示和B)联合分布信息(在不同时间上)。库尔茨和他的合作者(Ocone,Donnelly,Xiong,Rodrigues)引入了能级和马尔可夫映射,允许粒子及其谱系在极限中的无限集合。然而,这种方法仍然比统一理论更聪明。另外,Billingsley研究存在的概率措施对应的联合分布,但没有人解决的问题:当一个超过程的投影随机措施的路径空间?我们将研究这两种表示,并确定何时没有单一的路径空间随机测度。 3)脊分解和表示方法并不是强大数定律(SLLN)和大偏差原理(LDP)的灵丹妙药,因为许多超过程分别缺乏紧支撑性质和随机方程表示。在45年来,渡边的经典SLLN分支马尔可夫过程只有孤立的SLLN超过程在欧几里德空间被发现。 我们将从时间和粒子近似的角度研究超过程的SLLN、CLT、LDPs和LILs。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kouritzin, Michael其他文献

Kouritzin, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kouritzin, Michael', 18)}}的其他基金

Stochastic Processes and Applications
随机过程及其应用
  • 批准号:
    RGPIN-2018-05114
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Applications
随机过程及其应用
  • 批准号:
    RGPIN-2018-05114
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Applications
随机过程及其应用
  • 批准号:
    RGPIN-2018-05114
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Applications
随机过程及其应用
  • 批准号:
    RGPIN-2018-05114
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Applications
随机过程及其应用
  • 批准号:
    RGPIN-2018-05114
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Their Applications
随机过程及其应用
  • 批准号:
    203089-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Their Applications
随机过程及其应用
  • 批准号:
    203089-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Their Applications
随机过程及其应用
  • 批准号:
    203089-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Their Applications
随机过程及其应用
  • 批准号:
    203089-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic processes and applications
随机过程和应用
  • 批准号:
    203089-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Submesoscale Processes Associated with Oceanic Eddies
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    160 万元
  • 项目类别:

相似海外基金

Analysis, geometry and their interplays on fractals and stochastic processes on them
分形及其随机过程的分析、几何及其相互作用
  • 批准号:
    22H01128
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stochastic analysis for weighted Markov processes and their applications
加权马尔可夫过程的随机分析及其应用
  • 批准号:
    20K03635
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic Processes and Their Applications
随机过程及其应用
  • 批准号:
    203089-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Their Applications
随机过程及其应用
  • 批准号:
    203089-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Processes and Their Applications
随机过程及其应用
  • 批准号:
    203089-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
37th Conference on Stochastic Processes and their Applications
第37届随机过程及其应用会议
  • 批准号:
    1407743
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Stochastic Processes and Their Applications
随机过程及其应用
  • 批准号:
    203089-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic processes on disordered media -- discrete models and their scaling limits
无序介质上的随机过程——离散模型及其尺度限制
  • 批准号:
    25247007
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
The 36th Conference on Stochastic Processes and their Applications
第36届随机过程及其应用会议
  • 批准号:
    1257845
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
stochastic analysis for jump processes and their asymptotic expansions
跳跃过程及其渐近展开的随机分析
  • 批准号:
    24540175
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了