Symmetry in graphs and hypergraphs

图和超图的对称性

基本信息

  • 批准号:
    251352-2011
  • 负责人:
  • 金额:
    $ 0.95万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The four main research directions of this proposal pertain to the study of symmetry in graphs and related structures (digraphs and hypergraphs). Graphs are mathematical objects consisting of points (called vertices) and links (called edges) that join pairs of vertices. Graphs are used in computer science and many other disciplines to model such objects as data structures, communication networks, computational flows, traffic networks, chemical molecules, social networks, ecosystems etc. I am particularly interested in graphs with a lot of symmetry. Symmetry of a graph can be measured in many different ways: via transformations (called automorphisms) that preserve the graph; by the existence of certain substructures, for example, cycles that traverse every vertex (called Hamilton cycles); by the substructures into which the graph can be decomposed, and so on. Graphs with high symmetry (and their generalizations) play an important role in designing reliable networks, as well as in scheduling problems. Apart from applications, such graphs are interesting and beautiful from a purely theoretical point of view. Some of the problems I am interested in (for example, the problems on digraph decompositions and Hamilton cycles) are basic unsolved problems about graphs: beautiful in the simplicity of their statement and yet very difficult to solve; some have been open for decades. Solutions to these problems would improve our understanding of some important algebraic and combinatorial aspects of graph theory. The fifth research direction included in this proposal is a student project in applications of discrete mathematics. Its main objective is development of algorithms and software that would efficiently solve the problem of outcome prediction for three specific real-life applications, and thus may assist in: (a) the design of proteomic experiments and development of targeted gene therapies for a number of diseases (e.g. coronary heart disease, diabetes, and cancer); (b) predicting new drug-target associations for previously approved drugs; (c) predictive environmental and health risk assessment of chemical mixtures.
该提案的四个主要研究方向涉及图和相关结构(有向图和超图)的对称性研究。图是由点(称为顶点)和连接顶点对的链接(称为边)组成的数学对象。图在计算机科学和许多其他学科中用于对数据结构、通信网络、计算流、交通网络、化学分子、社交网络、生态系统等对象进行建模。我对具有大量对称性的图特别感兴趣。图的对称性可以通过多种不同的方式来测量:通过保留图的变换(称为自同构);通过某些子结构的存在,例如,遍历每个顶点的循环(称为汉密尔顿循环);通过图可以分解成的子结构,等等。具有高度对称性的图(及其泛化)在设计可靠网络以及调度问题中发挥着重要作用。除了应用之外,从纯理论的角度来看,这些图也很有趣且美观。我感兴趣的一些问题(例如,有向图分解和哈密尔顿循环的问题)是有关图的基本未解决问题:它们的陈述很简单,但很难解决;有些已经开放了几十年。这些问题的解决方案将提高我们对图论的一些重要代数和组合方面的理解。 该提案中包含的第五个研究方向是离散数学应用的学生项目。其主要目标是开发算法和软件,有效解决三种特定现实生活应用的结果预测问题,从而可能有助于:(a)针对多种疾病(例如冠心病、糖尿病和癌症)设计蛋白质组学实验和开发靶向基因疗法; (b) 预测先前批准药物的新药物靶点关联; (c) 化学混合物的预测性环境和健康风险评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sajna, Mateja其他文献

The women made it work: fuzzy transitive closure of the results chain in a dengue prevention trial in Mexico
  • DOI:
    10.1186/s12889-017-4301-0
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Andersson, Neil;Beauchamp, Mario;Sajna, Mateja
  • 通讯作者:
    Sajna, Mateja
Computing transitive closure of bipolar weighted digraphs
  • DOI:
    10.1016/j.dam.2012.06.013
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Niesink, Patrick;Poulin, Keven;Sajna, Mateja
  • 通讯作者:
    Sajna, Mateja

Sajna, Mateja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sajna, Mateja', 18)}}的其他基金

Cycle decompositions of graphs and eulerian properties of hypergraphs
图的循环分解和超图的欧拉性质
  • 批准号:
    RGPIN-2022-02994
  • 财政年份:
    2022
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Cycle decompositions of graphs and related problems
图的循环分解及相关问题
  • 批准号:
    RGPIN-2016-04798
  • 财政年份:
    2021
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Cycle decompositions of graphs and related problems
图的循环分解及相关问题
  • 批准号:
    RGPIN-2016-04798
  • 财政年份:
    2020
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Cycle decompositions of graphs and related problems
图的循环分解及相关问题
  • 批准号:
    RGPIN-2016-04798
  • 财政年份:
    2019
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Cycle decompositions of graphs and related problems
图的循环分解及相关问题
  • 批准号:
    RGPIN-2016-04798
  • 财政年份:
    2018
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Cycle decompositions of graphs and related problems
图的循环分解及相关问题
  • 批准号:
    RGPIN-2016-04798
  • 财政年份:
    2017
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Cycle decompositions of graphs and related problems
图的循环分解及相关问题
  • 批准号:
    RGPIN-2016-04798
  • 财政年份:
    2016
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetry in graphs and hypergraphs
图和超图的对称性
  • 批准号:
    251352-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetry in graphs and hypergraphs
图和超图的对称性
  • 批准号:
    251352-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Symmetry in graphs and hypergraphs
图和超图的对称性
  • 批准号:
    251352-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

不完备信息下基于流向图的诊断知识获取理论与方法
  • 批准号:
    51175102
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
线性码、群码和格的trellis研究
  • 批准号:
    60772131
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
  • 批准号:
    2300347
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Extremal and Ramsey Problems for Graphs and Hypergraphs
协作研究:图和超图的极值问题和 Ramsey 问题
  • 批准号:
    2300346
  • 财政年份:
    2023
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Continuing Grant
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2022
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Cycle decompositions of graphs and eulerian properties of hypergraphs
图的循环分解和超图的欧拉性质
  • 批准号:
    RGPIN-2022-02994
  • 财政年份:
    2022
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Existence of Specific Paths, Cycles, and Colorings in Graphs and Hypergraphs
图和超图中特定路径、循环和着色的存在性
  • 批准号:
    2153507
  • 财政年份:
    2022
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Standard Grant
Substructures in large graphs and hypergraphs
大图和超图的子结构
  • 批准号:
    EP/V038168/1
  • 财政年份:
    2022
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Fellowship
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2021
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2021
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and stability results for graphs and hypergraphs
图和超图的极值和稳定性结果
  • 批准号:
    RGPIN-2017-04215
  • 财政年份:
    2020
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
Matching extensions in graphs and hypergraphs: structures, algorithms and characterizations
图和超图的匹配扩展:结构、算法和表征
  • 批准号:
    RGPIN-2019-06429
  • 财政年份:
    2020
  • 资助金额:
    $ 0.95万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了