Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations

随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法

基本信息

  • 批准号:
    261229-2011
  • 负责人:
  • 金额:
    $ 2.67万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The proposed project focuses on the study of universal behaviors in critical phenomena in the areas of 1) random matrix theory; 2) random point processes; 3) nonlinear wave equations (Korteweg de Vries, Nonlinear Schroedinger, etc.) These areas are tied with the theory of Painleve' equations, isomonodromic systems and Riemann-Hilbert problems (i.e. non-Abelian boundary value problems). The critical phenomena we address occur in the study of asymptotic properties with respect to a small (or large) parameter; for example in the area of integrable wave equations like the NonLinear Schroedinger equation (NLS) the small parameter is Planck's constant. The equation is advocated in the study of special elongated phases of Bose-Einstein condensates and the study of rogue waves in oceanography. The behavior of the generic solution exhibits radically different behaviors in well defined regions of spacetime which we can think of as different phases; the notion of universality refers to the behavior in a scaling region around points on the boundary separating different phases, e.g. the points of gradient catastrophe. Such a behavior is independent of the initial data and (conjecturally) stable under certain perturbations of the dynamics as well. Depending on the nature of the transition, the phenomena display different scales w.r.t. the small parameter. In the case of Random Matrices, the universality typically refers to the asymptotic behavior of the statistics of eigenvalues at edges or in the bulk (e.g. Tracy-Widom distribution, Sine-kernel, etc); these behaviors depend only on symmetry properties of the model. Along the same lines the transition of certain random point processes displays similar characteristics (for example the transition from the Pearcey to the Airy point process in self-avoiding random walks). Recent result include a (partial) proof of B. Dubrovin conjecture on the behavior of small--dispersion NLS in the neighborhood of the point of gradient catastrophe and its relation to the theory of Painleve' equations: a novel link with rogue waves (Peregrine solutions of NLS) has been made in the oscillatory regions.
拟议的项目着重于研究在1)随机矩阵理论领域中对批判现象中普遍行为的研究; 2)随机点过程; 3)非线性波方程(Korteweg de Vries,非线性Schroedinger等) 这些领域与Painleve方程,异词质体系统和Riemann-Hilbert问题(即非亚洲边界价值问题)的理论相关。我们解决的关键现象发生在渐近特性相对于小(或大)参数的研究中。例如,在非线性Schroedinger方程(NLS)之类的集成波方程的区域中,小参数是普朗克的常数。该方程在研究Bose-Einstein冷凝物的特殊伸长阶段和海洋学中流氓波的研究中提倡该方程式。通用解决方案的行为在时空定义明确的区域中表现出根本不同的行为,我们可以将其视为不同的阶段。普遍性的概念是指边界围绕不同阶段(例如梯度灾难的点。这种行为与初始数据无关,并且在动力学的某些扰动下(猜想)稳定。根据过渡的性质,现象显示了不同的量表W.R.T.小参数。在随机矩阵的情况下,普遍性通常是指在边缘或散装中特征值统计的渐近行为(例如,Tracy-Widom分布,正弦角,等);这些行为仅取决于模型的对称特性。沿着相同的行,某些随机点过程的过渡显示出相似的特征(例如,从珍珠到自避免随机步行中的通风点过程的过渡)。 最近的结果包括杜布罗罗文氏芽孢杆菌猜想的(部分)证明对梯度灾难点附近的小分散NL的行为及其与潘leve方程理论的关系:与Rogue Wave(NLS的peregrine solutionse of Painleve'方程)的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bertola, Marco其他文献

Universality for the Focusing Nonlinear Schrodinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquee Solution to Painleve I
Soliton Shielding of the Focusing Nonlinear Schr?dinger Equation
  • DOI:
    10.1103/physrevlett.130.127201
  • 发表时间:
    2023-03-24
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bertola, Marco;Grava, Tamara;Orsatti, Giuseppe
  • 通讯作者:
    Orsatti, Giuseppe
Inversion formula and range conditions for a linear system related with the multi‐interval finite Hilbert transform in L 2
L 2 中多区间有限希尔伯特变换相关线性系统的反演公式和范围条件
  • DOI:
    10.1002/mana.201800567
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Katsevich, Alexander;Bertola, Marco;Tovbis, Alexander
  • 通讯作者:
    Tovbis, Alexander
Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach

Bertola, Marco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bertola, Marco', 18)}}的其他基金

Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2022
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2021
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2019
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2018
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2017
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2016
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

地下水超采区承压含水层系统时序InSAR监测方法
  • 批准号:
    42374013
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于深度学习方法的南海海气耦合延伸期智能预报研究
  • 批准号:
    42375143
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
肝癌外周血测序数据中循环肿瘤DNA占比的精确解耦方法研究
  • 批准号:
    62303271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶读数的拓扑关联结构域识别和比对方法研究
  • 批准号:
    62372156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于矩阵方法的电价博弈分析与控制策略研究
  • 批准号:
    62303170
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Categorical and Higher-Categorical Approaches to Duality and Semantics across Mathematics, Physics, and Information
跨数学、物理和信息的二元性和语义的分类和更高分类方法
  • 批准号:
    17K14231
  • 财政年份:
    2021
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
An exploration into universal grammar and micro-parameters on the basis of comparison between language change and language acquisition processes
基于语言变化与语言习得过程比较的普遍语法与微观参数探索
  • 批准号:
    20K00658
  • 财政年份:
    2020
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microscopic and hydrodynamics approaches to nonequilibrium statistical mechanical models
非平衡统计力学模型的微观和流体动力学方法
  • 批准号:
    19K03665
  • 财政年份:
    2019
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational approaches to understanding historical changes of languages
理解语言历史变化的计算方法
  • 批准号:
    18K18104
  • 财政年份:
    2018
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Defining Mirativity with the Notions of Focus and Evaluation: With Special Reference to Japanese and English
用聚焦和评价的概念定义模仿性:特别参考日语和英语
  • 批准号:
    16H03428
  • 财政年份:
    2016
  • 资助金额:
    $ 2.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了