Integrable systems in Geometry, Asymptotics and Inverse Problems

几何、渐近和反问题中的可积系统

基本信息

  • 批准号:
    RGPIN-2016-06660
  • 负责人:
  • 金额:
    $ 2.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Integrable systems consist in a special class of overdetermined sets of partial differential (or difference) equations. They appear in several contexts in slightly different guises, including Random Matrix Theory, Moduli Spaces of Riemann surfaces and connections, Stochastic Processes and Inverse problems. A common thread to all these instances is the possibility of reformulation in terms of a particular boundary value problem for matrix-valued analytic functions, or what is now commonly referred to as a Riemann-Hilbert problem (RHP). The proposed research seeks to both advance the general understanding of RHPs as well as their application to several outstanding problems.
可积系统包含一类特殊的偏微分(或差分)方程超定集。它们出现在几个上下文中略有不同的伪装,包括随机矩阵理论,黎曼曲面和连接的模空间,随机过程和逆问题。所有这些例子的一个共同点是,对于矩阵值解析函数的特定边值问题,或者现在通常被称为黎曼-希尔伯特问题(RHP),可以重新表述。拟议中的研究旨在促进对RHP的普遍理解以及它们在几个突出问题中的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bertola, Marco其他文献

Universality for the Focusing Nonlinear Schrodinger Equation at the Gradient Catastrophe Point: Rational Breathers and Poles of the Tritronquee Solution to Painleve I
Soliton Shielding of the Focusing Nonlinear Schr?dinger Equation
  • DOI:
    10.1103/physrevlett.130.127201
  • 发表时间:
    2023-03-24
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bertola, Marco;Grava, Tamara;Orsatti, Giuseppe
  • 通讯作者:
    Orsatti, Giuseppe
Singular Value Decomposition of a Finite Hilbert Transform Defined on Several Intervals and the Interior Problem of Tomography: The Riemann-Hilbert Problem Approach
Inversion formula and range conditions for a linear system related with the multi‐interval finite Hilbert transform in L 2
L 2 中多区间有限希尔伯特变换相关线性系统的反演公式和范围条件
  • DOI:
    10.1002/mana.201800567
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Katsevich, Alexander;Bertola, Marco;Tovbis, Alexander
  • 通讯作者:
    Tovbis, Alexander

Bertola, Marco的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bertola, Marco', 18)}}的其他基金

Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2021
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2019
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2018
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2016
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous approaches to universality results in random matrix theory, integrable systems and nonlinear integrable wave equations
随机矩阵理论、可积系统和非线性可积波动方程中普遍性的严格方法
  • 批准号:
    261229-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
新型非对称频分双工系统及其射频关键技术研究
  • 批准号:
    61102055
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
相关信道环境下MIMO-OFDM系统的空时码设计问题研究
  • 批准号:
    60572117
  • 批准年份:
    2005
  • 资助金额:
    6.0 万元
  • 项目类别:
    面上项目

相似海外基金

PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
  • 批准号:
    2332342
  • 财政年份:
    2024
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
  • 批准号:
    2301474
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Continuing Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
  • 批准号:
    2301994
  • 财政年份:
    2023
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
  • 批准号:
    22H00094
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
  • 批准号:
    RGPIN-2020-04060
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Integrable Systems and Geometry
量子可积系统和几何
  • 批准号:
    2203823
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Standard Grant
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
  • 批准号:
    RGPIN-2016-06660
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Grants Program - Individual
Finite dimensional integrable systems and differential geometry
有限维可积系统和微分几何
  • 批准号:
    DP210100951
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Projects
Multi-dimensionally consistent integrable systems in geometry and algebra
几何和代数中的多维一致可积系统
  • 批准号:
    DP200102118
  • 财政年份:
    2022
  • 资助金额:
    $ 2.91万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了