Ultra-Low Power Integrated Microlasers for Optical Interconnect Technologies
用于光互连技术的超低功率集成微型激光器
基本信息
- 批准号:327680-2013
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Consumer demand for novel information and communications technologies with increasingly sophisticated applications continues to drive the semiconductor industry to achieve ever smaller and faster devices. New ways of sustaining this growth in technology are being sought, and promising approaches are nearing commercial realization. This growth increasingly requires moving immense quantities of information extremely rapidly - between users across vast distances, within devices from the core to peripherals, at the component level from chip to chip, or even on the chip. About 2.5% of our global energy consumption is now dedicated to this task, and this fraction is growing rapidly. The problems of heat and power consumption can no longer be solved at the purely electronic level. Over long distances, we now rely on optical solutions. This proposal brings the optical solution down to the chip level. With my team of graduate students and colleagues, I will design and build a fundamentally new kind of ultra-small laser for eventual seamless integration with the electronic architecture of current and future generations of computer chips. We will use engineered materials called nanowires as the optically active part (the "gain") of our microlaser. This is the part with the potential for electronic integration. We will achieve very low power lasing by encasing the nanowires in a material called a photonic crystal (the "cavity"). This is an engineered material that manipulates and controls the laser system's optical response by either forbidding or allowing light to move in certain ways. The laser is extremely small because photonic crystals work at sizes of only a few optical wavelengths, the fundamental limit to tailoring the flow of light. By independently engineering the materials that realize optical gain and cavity response, we have bypassed a fundamental manufacturing constraint of contemporary approaches to solid state microlasing. We will focus on realizing lasing in photonic crystal architectures, and then work toward achieving electronic integration. Because this integration will be solely through the nanowires, we anticipate that it will be far faster and have much lower power requirements than contemporary approaches.
消费者对具有日益复杂的应用的新型信息和通信技术的需求继续推动半导体行业实现更小和更快的设备。人们正在寻找维持这种技术增长的新方法,有前途的方法即将实现商业化。这种增长越来越需要以极快的速度传输大量信息--在用户之间、在设备内部、从核心到外围设备、从芯片到芯片甚至在芯片上。目前,全球约2.5%的能源消耗用于这一任务,而且这一比例还在迅速增长。热量和功耗的问题不再能在纯电子层面上解决。在长距离通信中,我们现在依赖于光学解决方案。该方案将光学解决方案降低到芯片级。与我的研究生和同事团队一起,我将设计和制造一种全新的超小型激光器,最终与当前和未来几代计算机芯片的电子架构无缝集成。我们将使用被称为纳米线的工程材料作为微激光器的光学活性部分(“增益”)。这是具有电子集成潜力的部分。我们将通过将纳米线包裹在一种称为光子晶体的材料(“腔”)中来实现非常低的功率激光。这是一种工程材料,通过禁止或允许光以某些方式移动来操纵和控制激光系统的光学响应。激光器非常小,因为光子晶体的工作尺寸只有几个光波长,这是调整光流动的基本限制。通过独立设计实现光学增益和腔响应的材料,我们绕过了当代固态微激光方法的基本制造限制。我们将专注于在光子晶体架构中实现激光,然后致力于实现电子集成。因为这种集成将完全通过纳米线,我们预计它将比当代方法快得多,功耗要求也低得多。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Schriemer, Henry其他文献
Enhanced Efficiencies for High-Concentration, Multijunction PV Systems by Optimizing Grid Spacing under Nonuniform Illumination
- DOI:
10.1155/2014/582083 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:3.2
- 作者:
Sharma, Pratibha;Walker, Alex W.;Schriemer, Henry - 通讯作者:
Schriemer, Henry
An energy internet DERMS platform using a multi-level Stackelberg game
- DOI:
10.1016/j.scs.2020.102262 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:11.7
- 作者:
Fattahi, Javad;Wright, David;Schriemer, Henry - 通讯作者:
Schriemer, Henry
Schriemer, Henry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Schriemer, Henry', 18)}}的其他基金
Predictive accommodation of spatiotemporal variability in distributed photovoltaic generation
分布式光伏发电时空变化的预测调节
- 批准号:
RGPIN-2020-04003 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Predictive accommodation of spatiotemporal variability in distributed photovoltaic generation
分布式光伏发电时空变化的预测调节
- 批准号:
RGPIN-2020-04003 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Predictive accommodation of spatiotemporal variability in distributed photovoltaic generation
分布式光伏发电时空变化的预测调节
- 批准号:
RGPIN-2020-04003 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
- 批准号:
477238-2014 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
- 批准号:
477238-2014 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
AMP-STOR: Advanced module-level power electronics with battery STORage******
AMP-STOR:具有电池存储功能的高级模块级电力电子器件******
- 批准号:
537242-2018 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Engage Grants Program
Ultra-Low Power Integrated Microlasers for Optical Interconnect Technologies
用于光互连技术的超低功率集成微型激光器
- 批准号:
327680-2013 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
- 批准号:
477238-2014 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
Ultra-Low Power Integrated Microlasers for Optical Interconnect Technologies
用于光互连技术的超低功率集成微型激光器
- 批准号:
327680-2013 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
- 批准号:
477238-2014 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
骨髓微环境中正常造血干/祖细胞新亚群IL7Rα(-)LSK(low)细胞延缓急性髓系白血病进程的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
- 批准号:82271095
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
- 批准号:82270883
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
- 批准号:82270588
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
- 批准号:82002807
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
- 批准号:82003061
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
- 批准号:81873863
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
FuSe-TG: Ultra-low-power and Robust Autonomy of Edge Robotics with 2D Semiconductors
FuSe-TG:采用 2D 半导体的边缘机器人的超低功耗和鲁棒自主性
- 批准号:
2235207 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Achieving low-power and high-performance ultra-scalable processors with novel architecture
通过新颖的架构实现低功耗、高性能的超可扩展处理器
- 批准号:
23H03360 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mignon Ultra-Low-Power Edge AI Semiconductor Chip
Mignon超低功耗边缘AI半导体芯片
- 批准号:
10075703 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative R&D
Cross-Layer Energy Optimization with Adaptive Control for Ultra-Low Power IoT Sensor Nodes
针对超低功耗物联网传感器节点的跨层能量优化和自适应控制
- 批准号:
23K11026 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research and Development of Ultra-Low Power Consumption IoT Systems
超低功耗物联网系统研发
- 批准号:
23K11063 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Ultra-low loss beamformer and combiner-first technology for lower power, consumption phased arrays
SBIR 第一阶段:超低损耗波束形成器和组合器优先技术,用于降低功耗、消耗相控阵
- 批准号:
2335496 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Next-generation memory analysis and evaluation technology using statistical electrical measurement with ultra-low power consumption, short processing time, and low cost
采用统计电学测量的下一代内存分析评估技术,具有超低功耗、处理时间短、成本低的特点
- 批准号:
23K13372 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Electrochemical Dynamic Midinfrared Metasurface for Ultra-Low Power Wearable Thermoregulation
职业:用于超低功耗可穿戴温度调节的电化学动态中红外超表面
- 批准号:
2324286 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Energy harvesting system using ultra-low voltage electronics for low power wide area distributed energy resources
使用超低压电子设备的能量收集系统,用于低功率广域分布式能源
- 批准号:
22H01465 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of lightly-tilted crystal face trench MOS channels toward the realization of ultra-low resistance GaN power devices
开发微倾斜晶面沟槽MOS沟道以实现超低电阻GaN功率器件
- 批准号:
22K14294 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists