New Efficient Methods for Challenging Computational Optimization Problems

解决计算优化问题的有效新方法

基本信息

  • 批准号:
    327684-2012
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

There is a growing interest in, and demand for, efficient and practical computational optimization methods in numerous application domains. Our proposed research will develop methodology, and theoretical underpinnings and understanding, for three such problems in computational optimization. All three problems are hard, and computationally demanding, but progress on developing effective solutions will have broad impact not only in the field of optimization but across scientific computing and applications more generally. The first problem is to develop methods to find efficiency-enhancing structure in a user objective function code to allow for the efficient application of automatic differentiation (AD), applied in a structured way, to compute first and possibly second derivatives. This proposed effort builds on our previous work on AD for sparse problems, but the idea here is to find structure beyond sparsity. Our proposed technique involves understanding and manipulating the underlying computational graph (available through the use of 'reverse mode' AD). The second problem is to develop an effective procedure to find sparse solutions to optimization problems (the optimization themselves may or may not be sparse). This is an important problem because sparse solutions, in turn, yield efficient and robust models for various application modeling problems. Our approach is very novel but is related to a technique developed by the author (and colleagues) in the area of index tracking in finance. A sequence of approximations is created and optimization solutions are tracked from one approximation to the subsequent approximation. The final problem is similar but also different. It is to develop an effective optimization procedure for effective 'feature selection' in the support vector machine area. Effective feature selection can improve model interpretability and robustness. Our approach to 'feature selection' will draw heavily on previous work on piecewise differentiable problems, and problems with box constraints.
许多应用领域对高效实用的计算优化方法的兴趣和需求日益增长。我们提出的研究将为计算优化中的三个此类问题开发方法论、理论基础和理解。这三个问题都很困难,而且计算要求很高,但开发有效解决方案的进展不仅会在优化领域产生广泛影响,而且会在科学计算和更广泛的应用领域产生广泛影响。 第一个问题是开发在用户目标函数代码中找到提高效率的结构的方法,以允许以结构化方式有效应用自动微分(AD)来计算一阶导数和可能的二阶导数。这项提议的工作建立在我们之前针对稀疏问题的 AD 工作的基础上,但这里的想法是找到稀疏性之外的结构。我们提出的技术涉及理解和操作底层计算图(可通过使用“反向模式”AD 获得)。 第二个问题是开发一个有效的过程来找到优化问题的稀疏解(优化本身可能是稀疏的,也可能不是稀疏的)。这是一个重要的问题,因为稀疏解决方案反过来会为各种应用程序建模问题产生高效且稳健的模型。我们的方法非常新颖,但与作者(和同事)在金融指数跟踪领域开发的技术相关。创建一系列近似值,并从一个近似值到下一个近似值跟踪优化解决方案。 最后的问题相似但又不同。它旨在开发一种有效的优化程序,以在支持向量机领域进行有效的“特征选择”。有效的特征选择可以提高模型的可解释性和鲁棒性。我们的“特征选择”方法将大量借鉴先前关于分段可微问题和框约束问题的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Coleman, Thomas其他文献

Development of the Digital Astronaut Project for the analysis of the mechanisms of physiologic adaptation to microgravity: Validation of the cardiovascular system module
  • DOI:
    10.1016/j.actaastro.2007.12.054
  • 发表时间:
    2008-10-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Summers, Richard;Coleman, Thomas;Meck, Janice
  • 通讯作者:
    Meck, Janice
Respiratory Support during Bronchiolitis Due to One Virus versus More Than One Virus: An Observational Study
  • DOI:
    10.1055/s-0039-1691839
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Coleman, Thomas;Taylor, Alison;Martinez, F. Eduardo
  • 通讯作者:
    Martinez, F. Eduardo

Coleman, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Coleman, Thomas', 18)}}的其他基金

Large-scale Application of Automatic Differentiation in Computational Finance (and beyond)
自动微分在计算金融(及其他领域)中的大规模应用
  • 批准号:
    RGPIN-2017-03860
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Large-scale Application of Automatic Differentiation in Computational Finance (and beyond)
自动微分在计算金融(及其他领域)中的大规模应用
  • 批准号:
    RGPIN-2017-03860
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Large-scale Application of Automatic Differentiation in Computational Finance (and beyond)
自动微分在计算金融(及其他领域)中的大规模应用
  • 批准号:
    RGPIN-2017-03860
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Large-scale Application of Automatic Differentiation in Computational Finance (and beyond)
自动微分在计算金融(及其他领域)中的大规模应用
  • 批准号:
    RGPIN-2017-03860
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
New Efficient Methods for Challenging Computational Optimization Problems
解决计算优化问题的有效新方法
  • 批准号:
    327684-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
New Efficient Methods for Challenging Computational Optimization Problems
解决计算优化问题的有效新方法
  • 批准号:
    327684-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
New Efficient Methods for Challenging Computational Optimization Problems
解决计算优化问题的有效新方法
  • 批准号:
    327684-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
New Efficient Methods for Challenging Computational Optimization Problems
解决计算优化问题的有效新方法
  • 批准号:
    327684-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and robust optimization approaches for financial applications
金融应用高效稳健的优化方法
  • 批准号:
    327684-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and robust optimization approaches for financial applications
金融应用高效稳健的优化方法
  • 批准号:
    327684-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Development of New Materials and Methods for Effective, Selective, and Energy-efficient Olefin/Paraffin Separation and Ethylene Detection
开发有效、选择性和节能的烯烃/石蜡分离和乙烯检测的新材料和方法
  • 批准号:
    1954456
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Development of new catalytic methods for the efficient construction of natural product-inspired 3D scaffolds
开发新的催化方法以有效构建天然产物启发的 3D 支架
  • 批准号:
    2672142
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
CRII: CIF: New Structure-Exploiting and Memory-Efficient Methods for Large-Scale Optimization and Data Analysis
CRII:CIF:用于大规模优化和数据分析的新结构利用和内存高效方法
  • 批准号:
    1755705
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Development of new efficient structure-preserving numerical methods based on model reductions
基于模型简化的新型高效结构保持数值方法的开发
  • 批准号:
    17H02826
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New approaches to the construction of efficient high order time integration methods in the context of DG space discretisations for viscous and inviscid fluid flow
在粘性和非粘性流体流动的 DG 空间离散化背景下构建高效高阶时间积分方法的新方法
  • 批准号:
    288967378
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grants
New Efficient Methods for Challenging Computational Optimization Problems
解决计算优化问题的有效新方法
  • 批准号:
    327684-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
New Efficient Methods for Challenging Computational Optimization Problems
解决计算优化问题的有效新方法
  • 批准号:
    327684-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
New Efficient Methods for Challenging Computational Optimization Problems
解决计算优化问题的有效新方法
  • 批准号:
    327684-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
New Efficient Methods for Challenging Computational Optimization Problems
解决计算优化问题的有效新方法
  • 批准号:
    327684-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
New methods for the efficient syntheses of complex natural products
高效合成复杂天然产物的新方法
  • 批准号:
    341648-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了