Coxeter groups and related structures

考克塞特群及相关结构

基本信息

  • 批准号:
    355458-2013
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

My primary area of research is algebraic combinatorics. It is a highly active area of mathematics, with many connections to algebraic geometry, convex geometry, representation theory, topology, mathematical physics and statistical mechanics, among many others. I am more precisely interested on the combinatorial and geometrical aspects of the study of Coxeter (mirror reflection) groups and their related structures. Coxeter groups appear in very many domains of mathematics, for instance, as symmetry groups of regular polytopes, as Weyl groups of semi-simple Lie algebras and Kac-Moody algebras, and as triangle groups in geometry (Euclidean and hyperbolic). Properties of these groups are often key to the understanding of related structures. It is well-established that root systems are fundamental in the theory of Coxeter groups. While finite and affine root systems have been given a lot of attention, almost nothing is known for general infinite root systems. I have uncovered recently, with J.-P.~Labbé (Berlin), V.~Ripoll (UQAM), an exciting new approach that consists in the study of the limit points of roots, opening up a large program of research in several directions, each worthy of independant study. These directions go from applications to Kac-Moody algebras to analogs of generalized associahedra in the infinite case and include generalizations of weak order on root systems. whereas generalized associahedra are fundamental geometric objects in the study of cluster algebras, whose ramifications extend to physics, thermodynamics and statistics. I plan to exploit my research. Another line of research I will pursue relate Coxeter groups with the study of Descent algebras. Descent algebras are key ingredients in an enriched version of the representation theory of finite Coxeter groups. I plan to uncover this enriched structure by exploiting my past work on symmetric groups and hyperoctahedral groups, together with a new idea based on a "type D Hopf algebra".
我的主要研究领域是代数组合学。它是一个高度活跃的数学领域,与代数几何、凸几何、表示论、拓扑学、数学物理和统计力学等许多学科有许多联系。我更感兴趣的组合和几何方面的研究考克斯特(镜面反射)集团及其相关结构。考克斯特群出现在数学的许多领域,例如,作为正则多面体的对称群,作为半单李代数和卡茨-穆迪代数的外尔群,以及作为几何中的三角群(欧几里得和双曲)。这些基团的性质通常是理解相关结构的关键。 众所周知,根系是考克斯特群理论的基础。虽然有限和仿射根系统已经得到了很多关注,但对于一般的无限根系统几乎一无所知。我最近发现,与J。P.~ Labbé(柏林),V.~ Ripoll(UQAM),一种令人兴奋的新方法,包括研究根的极限点,在几个方向上开辟了一个大型研究项目,每个方向都值得独立研究。这些方向去从应用到卡茨-穆迪代数的类似物的广义associahedra在无限的情况下,包括推广弱秩序的根系。而广义结合面体是研究团代数的基本几何对象,其分支扩展到物理学、热力学和统计学等领域。我计划利用我的研究成果。另一条线的研究,我将追求与考克斯特群的研究下降代数。 下降代数是有限Coxeter群表示论的丰富版本中的关键成分。我计划通过利用我过去在对称群和超八面体群上的工作,以及基于“D型霍普夫代数”的新思想来揭示这种丰富的结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hohlweg, Christophe其他文献

Hohlweg, Christophe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hohlweg, Christophe', 18)}}的其他基金

Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
  • 批准号:
    RGPIN-2018-04615
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
  • 批准号:
    RGPIN-2018-04615
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
  • 批准号:
    RGPIN-2018-04615
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
  • 批准号:
    RGPIN-2018-04615
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
  • 批准号:
    RGPIN-2018-04615
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Coxeter groups and related structures
考克塞特群及相关结构
  • 批准号:
    355458-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Coxeter groups and related structures
考克塞特群及相关结构
  • 批准号:
    355458-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Coxeter groups and related structures
考克塞特群及相关结构
  • 批准号:
    355458-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Coxeter groups and related structures
考克塞特群及相关结构
  • 批准号:
    355458-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of coxeter groups and relations with their relative structures
coxeter 群的组合及其与相关结构的关系
  • 批准号:
    355458-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
Identifying the Effects of Race-Related Stressors on Laboratory- Induced Stress and Craving among African Americans with Alcohol Use Disorder
确定种族相关压力源对患有酒精使用障碍的非裔美国人实验室诱发的压力和渴望的影响
  • 批准号:
    10664454
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Enhancing Participation of Historically Minoritized Groups in Alzheimer Disease and Related Dementias Research
加强历史上少数群体对阿尔茨海默病和相关痴呆症研究的参与
  • 批准号:
    10752461
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10835395
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Preparing for Blood-Based Alzheimer’s Disease Biomarker Testing in Diverse Populations: Development of a Decision-Support Tool for Primary Care
为不同人群进行基于血液的阿尔茨海默病生物标志物测试做好准备:开发初级保健决策支持工具
  • 批准号:
    10722716
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
  • 批准号:
    10715238
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Developing a nonpharmacological pain intervention for community dwelling older adults with dementia
为社区居住的痴呆症老年人开发非药物疼痛干预措施
  • 批准号:
    10644490
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Share plus: Continuous Glucose Monitoring with Data Sharing in Older Adults with T1D and Their Care Partners
分享加:患有 T1D 的老年人及其护理伙伴的持续血糖监测和数据共享
  • 批准号:
    10660793
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Measuring the Impact of the Value Flower and Unobserved Heterogeneity on the Cost Effectiveness and Use of Novel Treatments for Alzheimer's Disease and Related Dementias
衡量价值花和未观察到的异质性对阿尔茨海默病和相关痴呆症新疗法的成本效益和使用的影响
  • 批准号:
    10658457
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了