Knowledge discovery from online social network
从在线社交网络发现知识
基本信息
- 批准号:402495-2011
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The increasing amount of communication between individuals in e-formats (e.g. email, instant messaging, blogs, etc.) has motivated computational research in social network analysis. Social network analysis techniques aim to search communities of shared interests or leaders within communities. Social networks are often represented as graphs, where nodes represent individuals and edges represent the relationship between them. Such graphs are massive, in which node may contain a large amount of text data. Many existing social network analysis techniques focus either on the social network topology measured by communication frequencies or the content generated by the users. However, neither information alone is sufficient for finding accurately communities of shared interests and leaders within communities. The information in the text and the linkage structure re-enforce each other, and this leads to higher quality result. In addition to this, existing social network analysis techniques are only effective in analyzing graphs which are from a single source and relatively complete. Furthermore, most existing approaches assume that the structure of the network is static. However, online social networks change continually and links within the network come from different online sources. For example, consider links from Usenet to the blogosphere, links between tweets and news articles, etc. There are also some applications in which the whole network is not available at one time, but available in the form of continuous stream. Such applications create unique challenges, because the entire graph cannot be held in main memory. What is needed to make social network analysis more effective is to develop techniques that take into account textual content, uncertainty, incompleteness, heterogeneity of data sources and the need of developing specialized algorithms for Web applications that involve continuous stream of edges. Our goal is to address these issues by developing appropriate models and algorithms for mining effectively online social networks.
个人之间以电子格式(如电子邮件、即时消息、博客等)进行的交流越来越多。激发了社会网络分析中的计算研究。社会网络分析技术的目的是寻找共同利益的社区或社区内的领导者。社交网络通常表示为图,其中节点表示个体,边表示个体之间的关系。这样的图是海量的,其中节点可能包含大量的文本数据。许多现有的社交网络分析技术关注于通过通信频率测量的社交网络拓扑或由用户生成的内容。然而,单靠这两种信息都不足以准确地找到具有共同利益的社区和社区内的领导人。文本中的信息和链接结构相互加强,这导致更高质量的结果。除此之外,现有的社交网络分析技术仅在分析来自单一来源且相对完整的图时有效。此外,大多数现有的方法假设网络的结构是静态的。然而,在线社交网络不断变化,并且网络内的链接来自不同的在线来源。例如,考虑从Usenet到博客圈的链接,推文和新闻文章之间的链接等,还有一些应用程序,其中整个网络不是一次性可用的,而是以连续流的形式可用。这样的应用程序带来了独特的挑战,因为整个图不能保存在主存储器中。为了使社会网络分析更有效,需要开发考虑文本内容、不确定性、不完整性、数据源异质性的技术,以及为涉及连续边缘流的Web应用程序开发专门算法的需要。我们的目标是通过开发适当的模型和算法来有效地挖掘在线社交网络,以解决这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bouguessa, Mohamed其他文献
A practical outlier detection approach for mixed-attribute data
- DOI:
10.1016/j.eswa.2015.07.018 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:8.5
- 作者:
Bouguessa, Mohamed - 通讯作者:
Bouguessa, Mohamed
Modeling and Predicting Community Structure Changes in Time-Evolving Social Networks
- DOI:
10.1109/tkde.2018.2851586 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:8.9
- 作者:
Tajeuna, Etienne Gael;Bouguessa, Mohamed;Wang, Shengrui - 通讯作者:
Wang, Shengrui
Discovering Knowledge-Sharing Communities in Question-Answering Forums
- DOI:
10.1145/1870096.1870099 - 发表时间:
2010-12-01 - 期刊:
- 影响因子:3.6
- 作者:
Bouguessa, Mohamed;Wang, Shengrui;Dumoulin, Benoit - 通讯作者:
Dumoulin, Benoit
Mining Community Structures in Multidimensional Networks
- DOI:
10.1145/3080574 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:3.6
- 作者:
Boutemine, Oualid;Bouguessa, Mohamed - 通讯作者:
Bouguessa, Mohamed
Identifying Authorities in Online Communities
- DOI:
10.1145/2700481 - 发表时间:
2015-05-01 - 期刊:
- 影响因子:5
- 作者:
Bouguessa, Mohamed;Ben Romdhane, Lotfi - 通讯作者:
Ben Romdhane, Lotfi
Bouguessa, Mohamed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bouguessa, Mohamed', 18)}}的其他基金
Multidimensional Heterogeneous Information Network Analysis and Mining
多维异构信息网络分析与挖掘
- 批准号:
RGPIN-2018-04495 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multidimensional Heterogeneous Information Network Analysis and Mining
多维异构信息网络分析与挖掘
- 批准号:
RGPIN-2018-04495 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multidimensional Heterogeneous Information Network Analysis and Mining
多维异构信息网络分析与挖掘
- 批准号:
RGPIN-2018-04495 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multidimensional Heterogeneous Information Network Analysis and Mining
多维异构信息网络分析与挖掘
- 批准号:
RGPIN-2018-04495 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Multidimensional Heterogeneous Information Network Analysis and Mining
多维异构信息网络分析与挖掘
- 批准号:
RGPIN-2018-04495 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Knowledge discovery from online social network
从在线社交网络发现知识
- 批准号:
402495-2011 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Data Mining for Energy Analysis
能源分析数据挖掘
- 批准号:
508360-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Plus Grants Program
Data Mining for Energy Analysis
能源分析数据挖掘
- 批准号:
500213-2016 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Mining Online Customers' Data to Increase Shopper-to-Shopper Engine Recommendation Capabilities
挖掘在线客户数据以提高购物者对购物者引擎推荐能力
- 批准号:
478369-2015 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Knowledge discovery from online social network
从在线社交网络发现知识
- 批准号:
402495-2011 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Learning and Discovery in Experimental Environmental Health Science: On the Path from Data to Knowledge
实验环境健康科学的学习和发现:从数据到知识的道路
- 批准号:
10580009 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Learning and Discovery in Experimental Environmental Health Science: On the Path from Data to Knowledge
实验环境健康科学的学习和发现:从数据到知识的道路
- 批准号:
10876103 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Knowledge Management Center for Illuminating the Druggable Genome
阐明可药物基因组的知识管理中心
- 批准号:
10560469 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Knowledge Management Center for Illuminating the Druggable Genome
阐明可药物基因组的知识管理中心
- 批准号:
10057365 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Knowledge Management Center for Illuminating the Druggable Genome
阐明可药物基因组的知识管理中心
- 批准号:
10314036 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Knowledge discovery from online social network
从在线社交网络发现知识
- 批准号:
402495-2011 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
KnowEng, a Scalable Knowledge Engine for Large-Scale Genomic Data-OVERALL
KnowEng,用于大规模基因组数据的可扩展知识引擎 - 总体
- 批准号:
8774407 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
KnowEng, a Scalable Knowledge Engine for Large-Scale Genomic Data-OVERALL
KnowEng,用于大规模基因组数据的可扩展知识引擎 - 总体
- 批准号:
8935854 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
KnowEng, a Scalable Knowledge Engine for Large-Scale Genomic Data-OVERALL
KnowEng,用于大规模基因组数据的可扩展知识引擎 - 总体
- 批准号:
9288931 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Knowledge discovery from online social network
从在线社交网络发现知识
- 批准号:
402495-2011 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual