Biomechanics and neuromuscular control of maneuvering flight
机动飞行的生物力学和神经肌肉控制
基本信息
- 批准号:402677-2011
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability of an animal to maneuver can determine its success at avoiding predators, catching food, and other fundamental behaviors that define the margin between life and death. Most research on the biomechanics of animal motion has concerned the initiation or maintenance of ballistic, brief, or steady state movements because these can be studied most readily in the laboratory. Maneuverability is therefore one of the most important but least understood aspects of animal locomotion. Previous research has progressed along two independent tracks: 1) Studies of animal morphology have explained how the size and shape of the body and the limbs influence the efficiency and dynamics of maneuvering. 2) Studies of neuromuscular physiology have revealed the mechanisms that animals use to power particular maneuvers. However, animals with the ability to generate substantial muscle power, such as those that hover or fly slowly, may be able to overcome efficiency costs imposed by suboptimal morphology to generate rapid but inefficient maneuvers. The proposed work will test the hypothesis that the limitations imposed by morphology are strongest when muscle power-generating capacity is low. Research will focus on the remarkable maneuvering flight of hummingbirds because these animals inhabit broad elevational ranges, which provide natural experiments for varying muscle power capacity. Two experimental approaches will be employed. The first is to use a wide field tracking system to study unconstrained flight trajectories. Techniques in computer vision will be used to decompose these complex movements into fundamental units called motion primitives. As a coarse analogy, these elements function like the movements performed in classical ballet such as pirouettes or entrechats, which are strung together to form a complete dance. Motion primitives therefore provide focus for describing the complexities of animal motion. The second approach will examine the biomechanics and neurophysiology underlying the motion primitives. The two approaches are reciprocally informative and will allow for a quantitative description of maneuverability and a mechanistic understanding of its limits.
动物的机动能力可以决定它在躲避捕食者、捕捉食物和其他决定生死界限的基本行为方面的成功。大多数关于动物运动的生物力学研究都涉及到弹道、短暂或稳定运动的启动或维持,因为这些运动最容易在实验室进行研究。因此,机动性是动物运动最重要但最不为人所知的方面之一。以前的研究沿着两个独立的轨道进行:1)动物形态研究解释了身体和四肢的大小和形状如何影响机动的效率和动力学。2)神经肌肉生理学的研究揭示了动物用来驱动特定动作的机制。然而,具有产生大量肌肉力量的能力的动物,例如那些盘旋或缓慢飞行的动物,可能能够克服因形态不佳而造成的效率成本,从而产生快速但低效的动作。这项拟议的工作将检验这样一个假设,即当肌肉发电能力较低时,形态施加的限制最强。研究将重点放在蜂鸟非凡的机动飞行上,因为这些动物生活在广阔的海拔范围内,这为改变肌肉力量能力提供了自然实验。将采用两种实验方法。第一种是使用宽视场跟踪系统来研究无约束飞行轨迹。计算机视觉中的技术将被用来将这些复杂的运动分解成称为运动基元的基本单元。作为一个粗略的比喻,这些元素的作用就像古典芭蕾舞中表演的动作,如旋转或回旋,它们串在一起形成一个完整的舞蹈。因此,运动基元为描述动物运动的复杂性提供了焦点。第二种方法将研究动作基本体背后的生物力学和神经生理学。这两种方法是相互提供信息的,并将允许对机动性进行定量描述,并从机械上理解其局限性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Altshuler, Douglas其他文献
Altshuler, Douglas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Altshuler, Douglas', 18)}}的其他基金
Physiological and biomechanical mechanisms of animal maneuverability
动物机动性的生理和生物力学机制
- 批准号:
RGPIN-2021-02977 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Physiological and biomechanical mechanisms of animal maneuverability
动物机动性的生理和生物力学机制
- 批准号:
RGPIN-2021-02977 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
An advanced surgical microscope for novel studies of sensorimotor integration for flight control
用于飞行控制感觉运动整合新颖研究的先进手术显微镜
- 批准号:
RTI-2021-00286 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Research Tools and Instruments
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2020
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2019
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2018
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
High-throughput measurement of visuomotor control for complex movement
复杂运动视觉运动控制的高通量测量
- 批准号:
RTI-2018-00142 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Research Tools and Instruments
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2016
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and neuromuscular control of maneuvering flight
机动飞行的生物力学和神经肌肉控制
- 批准号:
402677-2011 - 财政年份:2014
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Integrating Biomechanics and Experimental Pain to Understand Compensatory Mechanisms in Symptomatic Carpometacarpal Osteoarthritis
整合生物力学和实验疼痛来了解症状性腕掌骨关节炎的代偿机制
- 批准号:
10706985 - 财政年份:2022
- 资助金额:
$ 2.26万 - 项目类别:
Discovery of the Neural Drivers Underlying Injury-Risk Biomechanics
损伤风险生物力学背后的神经驱动因素的发现
- 批准号:
10404593 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery of the Neural Drivers Underlying Injury-Risk Biomechanics
损伤风险生物力学背后的神经驱动因素的发现
- 批准号:
10208101 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
Discovery of the Neural Drivers Underlying Injury-Risk Biomechanics
损伤风险生物力学背后的神经驱动因素的发现
- 批准号:
10615762 - 财政年份:2021
- 资助金额:
$ 2.26万 - 项目类别:
GaitNet Osteoarthritis - Canada: Engaging researchers, clinicians and stakeholders to mobilize gait biomechanics research aimed at improving knee osteoarthritis management.
GaitNet 骨关节炎 - 加拿大:让研究人员、临床医生和利益相关者参与动员步态生物力学研究,旨在改善膝骨关节炎的管理。
- 批准号:
365710 - 财政年份:2017
- 资助金额:
$ 2.26万 - 项目类别:
Miscellaneous Programs
Biomechanics and neuromuscular control of maneuvering flight
机动飞行的生物力学和神经肌肉控制
- 批准号:
402677-2011 - 财政年份:2014
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and neuromuscular control of maneuvering flight
机动飞行的生物力学和神经肌肉控制
- 批准号:
402677-2011 - 财政年份:2013
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and neuromuscular control of maneuvering flight
机动飞行的生物力学和神经肌肉控制
- 批准号:
402677-2011 - 财政年份:2012
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and neuromuscular control of maneuvering flight
机动飞行的生物力学和神经肌肉控制
- 批准号:
402677-2011 - 财政年份:2011
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Grants Program - Individual
Training in trunk control biomechanics in older adults
老年人躯干控制生物力学训练
- 批准号:
7560029 - 财政年份:2005
- 资助金额:
$ 2.26万 - 项目类别: