Physiological and biomechanical mechanisms of animal maneuverability
动物机动性的生理和生物力学机制
基本信息
- 批准号:RGPIN-2021-02977
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goals of my NSERC-funded program are to determine the mechanisms of complex locomotion, and to train HQP from diverse backgrounds in integrative biology. Maneuverability is defined as the capacity to make changes in speed and direction, and is an essential activity that can define the margin between life and death. Whereas most studies on this topic are conducted in steady-state conditions, e.g., treadmills, my work focuses on small birds because they are adept at complex flight within laboratory settings. To date, my Discovery Grant program has focused on biomechanics and has produced a series of high-profile papers. We identified three major aspects of maneuvering that are common to all animals, determined distinct biomechanical associations with each aspect, and developed an experimental approach that can now be applied to studying maneuverability in any animal. My most recent work pointed to a new and critical role for visual signals: self-motion generates a global visual signal termed optic flow, whereas the movements of another individual produces a local signal termed object motion. New techniques are now available that will allow me to ask questions about how these signals influence maneuverability, which was not previously possible. There are three major objectives for the next five years of my Discovery Grant program. The research will focus on solitary Anna's hummingbirds (Calypte anna) and social zebra finches (Taenopygia guttata). Objective 1 is to determine how the natural statistics of optic flow and object motion differ by mode of locomotion, habitat, and the presence of conspecifics. Two MSc students will develop and use head-mounted cameras to record the visual signals reaching the eye of hummingbirds during solitary and competitive flight, and on zebra finches flying solitary and in flocks. Objective 2 is to determine if the responses of visual motion neurons are tuned to species-specific environmental and social signals. A PhD student will use visual signals determined from objective 1 to measure electrophysiological responses of neurons. Objective 3 is to determine if during maneuvering flight, solitary hummingbirds register conspecific birds as "objects" and social zebra finches register a group of conspecifics as "optic flow". One PhD and two MSc students will combine behavioral and neuroscience approaches through virtual reality, gene expression and in vivo electrophysiology. This research will address fundamental questions at the interface of locomotor biomechanics and visual neuroscience. The results of the proposed experiments will also reveal algorithms for encoding specific features of habitats and of other animals in flight. Because these guidance algorithms will have high resolution with respect to both behavior and signal processing, the work will have significant potential to advance robot and drone design for the tasks of navigating complex habitats and collective movement of groups.
我的NSERC资助的项目的目标是确定复杂运动的机制,并培训来自不同背景的综合生物学的HQP。机动性被定义为改变速度和方向的能力,是决定生死界限的基本活动。虽然大多数关于这一主题的研究都是在稳态条件下进行的,例如跑步机,但我的工作重点是小鸟,因为它们擅长在实验室环境中进行复杂的飞行。到目前为止,我的发现资助项目一直专注于生物力学,并发表了一系列备受瞩目的论文。我们确定了所有动物共有的三个主要机动方面,确定了与每个方面不同的生物力学关联,并开发了一种实验方法,现在可以应用于研究任何动物的机动能力。我最近的工作指出了视觉信号的一个新的关键作用:自我运动产生称为光流的全局视觉信号,而另一个人的运动产生称为物体运动的局部信号。现在有了新的技术,可以让我问关于这些信号如何影响机动性的问题,这在以前是不可能的。我的探索奖助金计划未来五年有三个主要目标。这项研究将集中在独居的安娜蜂鸟(Calypte Anna)和群居斑马雀(Taenopygia Guttata)上。第一个目标是确定光流和物体运动的自然统计数据如何因运动模式、栖息地和同种物质的存在而不同。两名硕士学生将开发并使用头盔摄像头来记录蜂鸟在单独和竞争飞行时到达眼睛的视觉信号,以及斑雀单独飞行和成群飞行时的视觉信号。目标2是确定视觉运动神经元的反应是否对特定物种的环境和社会信号进行调节。一名博士生将使用目标1中确定的视觉信号来测量神经元的电生理反应。目标3是确定在机动飞行中,独居的蜂鸟是否将同种鸟类注册为“对象”,而群居斑雀是否将一组同种鸟类注册为“光流”。一名博士和两名硕士学生将通过虚拟现实、基因表达和活体电生理学将行为科学和神经科学的方法结合起来。这项研究将解决运动生物力学和视觉神经科学之间的基本问题。拟议的实验结果还将揭示对栖息地和其他飞行动物的特定特征进行编码的算法。由于这些制导算法在行为和信号处理方面都具有高分辨率,这项工作将具有推动机器人和无人机设计的巨大潜力,以完成导航复杂栖息地和群体集体运动的任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Altshuler, Douglas其他文献
Altshuler, Douglas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Altshuler, Douglas', 18)}}的其他基金
Physiological and biomechanical mechanisms of animal maneuverability
动物机动性的生理和生物力学机制
- 批准号:
RGPIN-2021-02977 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
An advanced surgical microscope for novel studies of sensorimotor integration for flight control
用于飞行控制感觉运动整合新颖研究的先进手术显微镜
- 批准号:
RTI-2021-00286 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Research Tools and Instruments
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
High-throughput measurement of visuomotor control for complex movement
复杂运动视觉运动控制的高通量测量
- 批准号:
RTI-2018-00142 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Research Tools and Instruments
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
The explanatory power of the lift equation in the wingbeat kinematics, motor control, and evolution of animal flight
升力方程在翅膀运动学、运动控制和动物飞行进化中的解释力
- 批准号:
RGPIN-2016-05381 - 财政年份:2016
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and neuromuscular control of maneuvering flight
机动飞行的生物力学和神经肌肉控制
- 批准号:
402677-2011 - 财政年份:2015
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and neuromuscular control of maneuvering flight
机动飞行的生物力学和神经肌肉控制
- 批准号:
402677-2011 - 财政年份:2014
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
- 批准号:
2317442 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
- 批准号:
2317444 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
- 批准号:
2327732 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2022: Mechanisms of phenotypic novelty: biomechanical, sensory, and genetic drivers of ongoing rapid evolution in cricket song
2022 财年 NSF 生物学博士后奖学金:表型新颖性的机制:板球鸣叫持续快速进化的生物力学、感觉和遗传驱动因素
- 批准号:
2209024 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Fellowship Award
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
- 批准号:
2317443 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10738365 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
- 批准号:
2327731 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Mechanisms of Primary Cilia Regulating Tendon Enthesis Development and Regeneration
初级纤毛调节肌腱附着点发育和再生的机制
- 批准号:
10707864 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
- 批准号:
2327730 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant