Semi-definite method in Combinatorics

组合学中的半定法

基本信息

  • 批准号:
    418520-2012
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The goal of this proposal is a systematic investigation of a class of problems of in extremal combinatorics using semi-definite programming and structural methods. Extremal combinatorics is an important and active area of discrete mathematics, investigating maximum size of a combinatorial structure satisfying certain requirements. Results in extremal combinatorics are frequently related to problems in computer science, information theory, number theory and/or geometry. Many results in extremal combinatorics are obtained using just a handful of instruments, such as induction and Cauchy-Schwarz inequality, i.e. the semi-definite method. Recently, Razborov developed a flag calculus which captures many of the available techniques in pure form, and allows one, in particular, to computerize the search for the right combination. In the last couple of years, this approach has led to computer-generated proofs of several classical conjectures and improvement of the best bounds related to a number of others. The PI propose to continue this line of investigation, extending the classes of considered questions to problems in additive number theory and discrete geometry. The PI also proposes to combine these computational methods with techniques from structural graph theory. Finally, the PI proposes to investigate the limitations of the semi-definite method in extremal combinatorics. Lovasz and Szegedy have observed that a large class of valid inequalities in extremal graph theory can be approximated with arbitrary precision by Cauchy-Schwarz inequalities. Hatami and the PI have shown that not all such inequalities follow directly from the Cauchy-Schwarz ones. It is still, however, possible that large structured subclasses of inequalities in extremal combinatorics can be proved using the semi-definite method.
本文的目标是用半定规划和结构方法系统地研究一类极值组合问题。极值组合是离散数学中一个重要而活跃的领域,它研究满足一定要求的组合结构的最大尺寸。极值组合的结果经常与计算机科学、信息论、数论和/或几何中的问题有关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Norin, Sergey其他文献

The Spectrum of Triangle-Free Graphs
无三角形图的谱
  • DOI:
    10.1137/22m150767x
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Balogh, József;Clemen, Felix Christian;Lidický, Bernard;Norin, Sergey;Volec, Jan
  • 通讯作者:
    Volec, Jan
Counterexamples to a Conjecture of Harris on Hall Ratio
哈里斯霍尔比猜想的反例
  • DOI:
    10.1137/18m1229420
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Blumenthal, Adam;Lidický, Bernard;Martin, Ryan R.;Norin, Sergey;Pfender, Florian;Volec, Jan
  • 通讯作者:
    Volec, Jan

Norin, Sergey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Norin, Sergey', 18)}}的其他基金

Structure and Coloring of Sparse Graphs
稀疏图的结构和着色
  • 批准号:
    RGPIN-2022-03246
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and Structural Aspects of Graph Minor Theory
图小论的极值和结构方面
  • 批准号:
    RGPIN-2017-05010
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and Structural Aspects of Graph Minor Theory
图小论的极值和结构方面
  • 批准号:
    RGPIN-2017-05010
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and Structural Aspects of Graph Minor Theory
图小论的极值和结构方面
  • 批准号:
    RGPIN-2017-05010
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and Structural Aspects of Graph Minor Theory
图小论的极值和结构方面
  • 批准号:
    RGPIN-2017-05010
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Extremal and Structural Aspects of Graph Minor Theory
图小论的极值和结构方面
  • 批准号:
    RGPIN-2017-05010
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-definite method in Combinatorics
组合学中的半定法
  • 批准号:
    418520-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-definite method in Combinatorics
组合学中的半定法
  • 批准号:
    418520-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-definite method in Combinatorics
组合学中的半定法
  • 批准号:
    418520-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Semi-definite method in Combinatorics
组合学中的半定法
  • 批准号:
    418520-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
  • 批准号:
    2884658
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship
Energy saving control using discontinuous or non-positive definite input cost
使用不连续或非正定投入成本的节能控制
  • 批准号:
    19H02157
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Turan problem for positive definite functions
正定函数的图兰问题
  • 批准号:
    540917-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    University Undergraduate Student Research Awards
Construction of theory of polyhedral approximation of the semi-definite cone in conic optimization and its applications
二次曲线优化中半定锥多面体逼近理论的构建及其应用
  • 批准号:
    19H02373
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Challenges into the definite control of human odor by regulating the oxidation of a newly conceptualized terpenoid "squalene"
通过调节新概念萜类“角鲨烯”的氧化来明确控制人类气味的挑战
  • 批准号:
    19K22265
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Doctoral Dissertation Research: Investigating Overt Definite Articles and Grammatical Variation
博士论文研究:调查显性定冠词和语法变异
  • 批准号:
    1852744
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Development of the English Nominal Domain in Adult Second Language
成人第二语言英语名词领域的发展
  • 批准号:
    17K02976
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Minimisation corrosive attack in the conus-interface of modular endoprothesis by means of definite surface modification via warm deep rolling
通过温深滚压进行明确的表面改性,最大限度地减少模块化内置假体圆锥界面的腐蚀侵蚀
  • 批准号:
    382919963
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grants
Semi-definite method in Combinatorics
组合学中的半定法
  • 批准号:
    418520-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Discretisations of sign-definite formulations for the Helmholtz equation
亥姆霍兹方程符号定式的离散化
  • 批准号:
    EP/N019407/1
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了