Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
基本信息
- 批准号:RGPIN-2018-05191
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Beginning with the work of von Neumann on the mathematical foundations of quantum physics, mathematicians have found it profitable to view various structures arising in the theory of operator algebras as noncommutative counterparts of classical mathematical objects. This philosophy underlies my work, which spans a wide range of topics within the field of operator algebras. My most significant recent work is concentrated in two areas: the structure of operator algebras associated to groups and the structure of noncommutative convex sets.
The first major component of my proposal concerns the structure of operator algebras associated to groups and dynamical systems. On the one hand, group-theoretic constructions of operator algebras provide a valuable source of examples and questions. On the other hand, it is becoming increasingly clear that many problems about the analytic structure of groups and dynamical systems are most naturally studied within an operator-algebraic framework. The fundamental problem considered in my research is how to relate properties of the group or dynamical system to properties of the corresponding operator algebra.
The second major component of my proposal concerns the theory of noncommutative convexity. In 1969, motivated by groundbreaking work on the structure of convex sets in infinite dimensional spaces, Arveson proposed a theory of noncommutative convexity as a framework for the study of objects arising from noncommutative mathematics. Despite the enormous potential of these ideas, they went undeveloped for many years until recent breakthroughs, the first by Arveson himself and the second by current author in joint work with K.R. Davidson. I plan to continue developing these ideas, which have already been applied with great success to problems in fields like quantum information theory, group theory and semidefinite optimization.
从冯·诺伊曼关于量子物理学数学基础的工作开始,数学家们发现,将算子代数理论中出现的各种结构视为经典数学对象的非交换对立物是有益的。这种哲学是我的工作的基础,它跨越了算子代数领域内的广泛主题。我最近最重要的工作集中在两个领域:与群相关的算子代数的结构和非交换凸集的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kennedy, Matthew其他文献
Dynamical effects of calcium-sensitive potassium currents on voltage and calcium alternans
- DOI:
10.1113/jp273626 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:5.5
- 作者:
Kennedy, Matthew;Bers, Donald M.;Sato, Daisuke - 通讯作者:
Sato, Daisuke
Dialister pneumosintes and aortic graft infection - a case report.
- DOI:
10.1186/s12879-023-08584-3 - 发表时间:
2023-09-19 - 期刊:
- 影响因子:3.7
- 作者:
Patel, Rachel;Chong, Debra S. T.;Guy, Alison J.;Kennedy, Matthew - 通讯作者:
Kennedy, Matthew
Analysis of consumer choice for low-carbon technologies by using neural networks
- DOI:
10.1016/j.jclepro.2015.10.035 - 发表时间:
2016-01-20 - 期刊:
- 影响因子:11.1
- 作者:
Kennedy, Matthew;Van-Nguyen Dinh;Basu, Biswajit - 通讯作者:
Basu, Biswajit
Changes in Epidermal Growth Factor Receptor Gene Copy Number during Oral Carcinogenesis
- DOI:
10.1158/1055-9965.epi-15-0949 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:3.8
- 作者:
Bates, Timothy;Kennedy, Matthew;Robinson, Max - 通讯作者:
Robinson, Max
Kennedy, Matthew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kennedy, Matthew', 18)}}的其他基金
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
- 批准号:
522716-2018 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
- 批准号:
522716-2018 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
- 批准号:
418585-2012 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
- 批准号:
418585-2012 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
- 批准号:
418585-2012 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Function Theory and Multivariable Operator Theory
非交换函数论和多变量算子理论
- 批准号:
418585-2012 - 财政年份:2014
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Investigation of operator algebras associated to number fields
与数域相关的算子代数的研究
- 批准号:
19K14551 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
- 批准号:
522716-2018 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Operator algebras associated to groups and noncommutative convexity
与群和非交换凸性相关的算子代数
- 批准号:
522716-2018 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Operator Algebras Associated to Groups and Noncommutative Convexity
与群和非交换凸性相关的算子代数
- 批准号:
RGPIN-2018-05191 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
EAPSI: Modular Vertex Operator Algebras Associated with the Virasoro Algebra
EAPSI:与 Virasoro 代数相关的模顶点算子代数
- 批准号:
1713945 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Fellowship Award
Operator Algebras Associated with Subproduct Systems
与子积系统相关的算子代数
- 批准号:
418143-2012 - 财政年份:2013
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Operator Algebras Associated with Subproduct Systems
与子积系统相关的算子代数
- 批准号:
418143-2012 - 财政年份:2012
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual