Statistical Methods for Model Diagnosis and Robust Statistical Procedures under Model Misspecification
模型诊断的统计方法和模型错误指定下的稳健统计程序
基本信息
- 批准号:436110-2013
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Model misspecification is a problem of great importance in statistical analysis as misspecified models can lead to estimation inconsistency and/or estimation inefficiency. My research program focuses on establishing rigorous statistical tests and diagnostic tools for model misspecification and developing robust estimation and inference procedures under model misspecification.
In linear regression models, it is common to assume homogeneous variances. However, this assumption is violated in heteroscedastic data that may arise in many applications including economics, environmental sciences, and other substantive areas. My work is centered on developing powerful tests for identifying covariates contributing to heteroscedasticity. My proposed method can be applied to the analysis of various types of response variables, including continuous outcomes, censored survival outcomes, and time series.
In risk prediction, it is important to quantify the improvement in prediction accuracy if new predictors are added on top of traditional predictors. Since simple working models, which are likely misspecified, are used as the prediction model to approximate sophisticated underlying probabilistic mechanisms, I will develop a framework of robust estimation and inference procedures for the improvement of the new predictors under model misspecification. In addition, this framework will allow for practical complications such as situations where competing risks are present, or situations where complex sampling designs are employed due to high measurement costs of the new predictors.
模型误定是统计分析中一个非常重要的问题,因为误定模型会导致估计不一致和/或估计效率低下。我的研究计划侧重于建立严格的统计测试和诊断工具的模型误定和发展稳健的估计和推理程序下的模型误定。
在线性回归模型中,通常假设方差齐性。然而,这一假设是违反异方差数据,可能会出现在许多应用,包括经济学,环境科学,和其他实质性领域。我的工作集中在开发强大的测试,以确定协变量有助于异方差性。我提出的方法可以应用于分析各种类型的响应变量,包括连续结果,删失生存结果和时间序列。
在风险预测中,如果在传统预测因子之上添加新的预测因子,则量化预测精度的提高是重要的。由于简单的工作模型,这可能是错误的,被用来作为预测模型,以近似复杂的潜在概率机制,我将开发一个框架,强大的估计和推理程序,以改善新的预测模型下的错误。此外,这一框架将考虑到实际的复杂性,如存在竞争风险的情况,或由于新预测因素的高测量成本而采用复杂抽样设计的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhou, Qian其他文献
Efficacy of twice-daily high-frequency repetitive transcranial magnetic stimulation on associative memory.
- DOI:
10.3389/fnhum.2022.973298 - 发表时间:
2022 - 期刊:
- 影响因子:2.9
- 作者:
Hua, Qiang;Zhang, Yuanyuan;Li, Qianqian;Gao, Xiaoran;Du, Rongrong;Wang, Yingru;Zhou, Qian;Zhang, Ting;Sun, Jinmei;Zhang, Lei;Ji, Gong-jun;Wang, Kai - 通讯作者:
Wang, Kai
Discovery of catalytic-site-fluorescent probes for tracing phosphodiesterase 5 in living cells.
发现用于追踪活细胞中磷酸二酯酶 5 的催化位点荧光探针
- DOI:
10.1039/d1ra06247f - 发表时间:
2021-09-27 - 期刊:
- 影响因子:3.9
- 作者:
Qiu, Meiying;Wu, Deyan;Huang, Yi-You;Huang, Yue;Zhou, Qian;Tian, Yijing;Guo, Lei;Gao, Yuqi;Luo, Hai-Bin - 通讯作者:
Luo, Hai-Bin
The mediating role of incentives in association between leadership attention and self-perceived continuous improvement in infection prevention and control among medical staff: A cross-sectional survey.
- DOI:
10.3389/fpubh.2023.984847 - 发表时间:
2023 - 期刊:
- 影响因子:5.2
- 作者:
Wang, Lu;Zhang, Dandan;Liu, Junjie;Tang, Yuqing;Zhou, Qian;Lai, Xiaoquan;Zheng, Feiyang;Wang, Qianning;Zhang, Xinping;Cheng, Jing - 通讯作者:
Cheng, Jing
Short-term head-down bed rest microgravity simulation alters salivary microbiome in young healthy men.
- DOI:
10.3389/fmicb.2022.1056637 - 发表时间:
2022 - 期刊:
- 影响因子:5.2
- 作者:
Sun, Hui;Zhou, Qian;Qiao, Pengyan;Zhu, Di;Xin, Bingmu;Wu, Bin;Tang, Chuhua - 通讯作者:
Tang, Chuhua
Circ-ATIC regulates esophageal squamous cell carcinoma growth and metastasis through miR-1294/PBX3 pathway.
- DOI:
10.1016/j.heliyon.2023.e12916 - 发表时间:
2023-01 - 期刊:
- 影响因子:4
- 作者:
Zhou, Qian;Lei, Chengang;Cui, Fenghe;Chen, Hao;Cao, Xianzhao - 通讯作者:
Cao, Xianzhao
Zhou, Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhou, Qian', 18)}}的其他基金
Statistical Methods for Model Diagnosis and Robust Statistical Procedures under Model Misspecification
模型诊断的统计方法和模型错误指定下的稳健统计程序
- 批准号:
436110-2013 - 财政年份:2014
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Diagnosis and Robust Statistical Procedures under Model Misspecification
模型诊断的统计方法和模型错误指定下的稳健统计程序
- 批准号:
436110-2013 - 财政年份:2013
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Model fusion statistical methods for higher-order information extraction
高阶信息提取的模型融合统计方法
- 批准号:
19K11854 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Methods to Jointly Model Multiple Pain Outcome Measures
联合建模多种疼痛结果指标的统计方法
- 批准号:
10622820 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
522718-2018 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
522718-2018 - 财政年份:2018
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2018
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods for the estimation of body shape by fitting 3D whole-body scanning date to homologous body model in Japanese elite female athletes
日本精英女运动员3D全身扫描数据与同源身体模型拟合体型估计的统计方法
- 批准号:
16H03236 - 财政年份:2016
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)