Background subtraction with deep learning

通过深度学习进行背景扣除

基本信息

  • 批准号:
    484880-2015
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Osprey Informatics Inc. has a large clientele from Oil and Gas sector interested in automated surveillance of outdoor scenes. Manual monitoring is tedious, error prone and expensive. Thus, Osprey Informatics is looking out to build automated and computer vision-based solutions. The very first step in a computer vision-based automated monitoring of a video stream is known as background subtraction (BGS), which finds out motion and temporal changes that occur in the scene being imaged. Once BGS is performed, further processing and analysis of the scene can be accomplished toward automated surveillance. Existing solutions for BGS have been proved ineffective for the challenging data sets Ospery deal with. Challenges within the data sets include long time lapse between consecutive images, outdoor scene changes due to natural lighting variations, appearance of shadows, and camera shakes due to windy conditions. The goal of this research is to build a BGS solution, which is able to mitigate the effects of the aforementioned adverse factors as much as possible by using the latest neural network-based tools from computer vision.
鱼鹰信息公司(Osprey Informatics Inc.)有大量来自石油和天然气行业的客户,他们对石油和天然气的自动监控感兴趣

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ray, Nilanjan其他文献

Fast Large-Scale Spectral Clustering via Explicit Feature Mapping
通过显式特征映射进行快速大规模谱聚类
  • DOI:
    10.1109/tcyb.2018.2794998
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    He, Li;Ray, Nilanjan;Zhang, Hong
  • 通讯作者:
    Zhang, Hong
Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network
  • DOI:
    10.3390/rs12091432
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Rabbi, Jakaria;Ray, Nilanjan;Chao, Dennis
  • 通讯作者:
    Chao, Dennis
Cell tracking in microscopic video using matching and linking of bipartite graphs
Robust people counting using sparse representation and random projection
  • DOI:
    10.1016/j.patcog.2015.02.009
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Foroughi, Homa;Ray, Nilanjan;Zhang, Hong
  • 通讯作者:
    Zhang, Hong

Ray, Nilanjan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ray, Nilanjan', 18)}}的其他基金

Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
AI-based document preprocessing for optical character recognition
基于人工智能的光学字符识别文档预处理
  • 批准号:
    567474-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Differentiable Programming for Computer Vision and Medical Image Analysis
计算机视觉和医学图像分析的可微分编程
  • 批准号:
    RGPIN-2020-04139
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
AI-based Screening for Breast Cancer Treatment
基于人工智能的乳腺癌治疗筛查
  • 批准号:
    558274-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Compressed Sensing for Computer Vision
计算机视觉的压缩感知
  • 批准号:
    RGPIN-2015-03796
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time Document Registration with Deep Learning**
通过深度学习进行实时文档注册**
  • 批准号:
    536600-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Compressed Sensing for Computer Vision
计算机视觉的压缩感知
  • 批准号:
    RGPIN-2015-03796
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Using deep learning to detect and track all modes in traffic videos
使用深度学习检测和跟踪交通视频中的所有模式
  • 批准号:
    508834-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Compressed Sensing for Computer Vision
计算机视觉的压缩感知
  • 批准号:
    RGPIN-2015-03796
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
MRI-Based Renal Oximetry in Early Diabetic Kidney Disease
基于 MRI 的肾血氧饱和度在早期糖尿病肾病中的应用
  • 批准号:
    10593684
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Vessel Identification and Tracing in DSA Image Series for Cerebrovascular Surgical Planning
用于脑血管手术计划的 DSA 图像系列中的血管识别和追踪
  • 批准号:
    10726103
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Investigation of the quantitative intracranial aneurysm wall enhancement and geometric features associated with aneurysm volume growth
颅内动脉瘤壁定量增强和与动脉瘤体积生长相关的几何特征的研究
  • 批准号:
    10415665
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Investigation of the quantitative intracranial aneurysm wall enhancement and geometric features associated with aneurysm volume growth
颅内动脉瘤壁定量增强和与动脉瘤体积生长相关的几何特征的研究
  • 批准号:
    10684949
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Quantitative ASL MR angiography and perfusion imaging for cerebral revascularization
用于脑血运重建的定量 ASL MR 血管造影和灌注成像
  • 批准号:
    10646178
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Estimation of High Frame Rate Digital Subtraction Angiography Sequences at Low Radiation Dose
低辐射剂量下高帧率数字减影血管造影序列的估计
  • 批准号:
    10288682
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Interplay between tumor and microenvironment in bone metastasis
骨转移中肿瘤与微环境的相互作用
  • 批准号:
    10590697
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
Interplay between tumor and microenvironment in bone metastasis
骨转移中肿瘤与微环境的相互作用
  • 批准号:
    10197281
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了