Numerical studies of compact object binaries
紧凑对象二进制的数值研究
基本信息
- 批准号:RGPIN-2014-03899
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gravitational waves are ripples in space and time which carry information to us about the most violent events in the universe: Collisions of black holes or neutron stars, supernovae and the big bang itself. During the last decade gravitational wave detectors have been built, most notably the U.S. Advanced Laser Interferometer Gravitational Wave Observatory (LIGO). As early as 2015 these detectors plan to begin searches for gravitational waves. The first GW discovery will be a watershed event, similar to the recent discovery of the Higgs boson. Less dramatic, but arguably even more important will be the subsequent stream of further GW observations, which will yield far-reaching insights into our Universe: Are the observed compact object mergers consistent with general relativity? How do massive stars die, and what compact objects do they leave behind? How does matter behave at supernuclear densities? How do black holes and Neutron stars interact near the centres of galaxies and in globular clusters?
This revolution requires precise knowledge of the expected gravitational waves, which can only be obtained from supercomputer calculations. Knowing the shape of the expected waves allows to find weaker waves, increasing the number of gravitational waves that will be observed. Knowledge of the waveform is also required to determine the precise information about the origin of the wave: for instance, the masses and rotation rates of black holes and neutron stars, their location in the universe.
Prof. Pfeiffer and his research group at CITA are world-leaders in computer simulations of colliding black holes and neutron stars, and in applying their results to gravitational wave astrophysics. With collaborators in the U.S. they have developed an outstanding computer code to simulate colliding compact objects, and have performed the most exhaustive study of colliding black holes. Prof. Pfeiffer’s group also participates in the LIGO Scientific Collaboration where it leads the development of low-latency search pipelines that can decide within minutes whether gravitational waves have passed through the telescopes.
This proposal seeks funding to continue this research group to ensure LIGO will discover gravitational waves as quickly as possible, will be as sensitive as possible, and will be able to determine, with minimal bias, the properties of the objects emitting the gravitational waves. This research program spans a gamut of interwoven themes. We propose to continue what we do well: Perform binary black hole calculations and construct waveform templates based on these simulations. Given the accomplishments of Pfeiffer’s present Discovery Grant, the complete solution for quasi-circular black hole binaries appears feasible, and is our objective. We propose to expand into a survey of eccentric binary black holes. Such systems -if they exist- must form in profoundly different ways than quasi-circular binaries, and exhibit properties that are absent in quasi-circular binaries. Unfortunately, eccentric binaries are much more difficult to detect. Our simulations will aid in detecting them and –at the least– allow to quantify how sensitive LIGO actually is to such sources. We propose to intensify direct participation in LIGO’s search efforts. Finally, we propose to develop a novel, next generation relativistic astrophysics code which removes limiting restrictions of the current code. It will be the foundation for future world-class science from this research group.
The variety of objectives balances immediate needs of LIGO for the first breakthrough discovery with strategic development of long-term scientific leadership. We request funding for about 60% of this research program, with the remainder anticipated from other sources.
引力波是空间和时间上的涟漪,它为我们带来了关于宇宙中最猛烈事件的信息:黑洞或中子星的碰撞、超新星和大爆炸本身。在过去的十年里,已经建造了引力波探测器,最著名的是美国先进的激光干涉仪引力波天文台(LIGO)。早在2015年,这些探测器就计划开始搜索引力波。第一个GW的发现将是一个分水岭事件,类似于最近发现的希格斯玻色子。不那么戏剧性,但可以说更重要的是随后的GW进一步观测,这将对我们的宇宙产生深远的见解:观察到的致密天体合并是否与广义相对论一致?大质量恒星是如何消亡的,它们会留下什么样的致密天体?物质在超核密度下表现如何?黑洞和中子星如何在星系中心附近和球状星团中相互作用?
这场革命需要对预期引力波的精确了解,而这只能通过超级计算机计算来获得。了解预期波的形状可以找到更弱的波,从而增加将被观测到的引力波的数量。对波形的了解也需要确定关于波起源的准确信息:例如,黑洞和中子星的质量和自转速度,以及它们在宇宙中的位置。
Pfeiffer教授和他在CITA的研究小组在黑洞和中子星碰撞的计算机模拟以及将他们的结果应用于引力波天体物理方面处于世界领先地位。他们与美国的合作者一起开发了一种出色的计算机代码来模拟致密物体的碰撞,并对碰撞的黑洞进行了最详尽的研究。Pfeiffer教授的团队还参与了LIGO科学合作项目,在那里他们领导了低延迟搜索管道的开发,这种管道可以在几分钟内确定引力波是否通过望远镜。
这项提议寻求资金以继续这一研究小组,以确保LIGO将尽快发现引力波,尽可能地敏感,并能够以最小的偏差确定发射引力波的物体的性质。这个研究项目涵盖了一系列相互交织的主题。我们建议继续做我们擅长的事情:执行二进制黑洞计算并基于这些模拟构建波形模板。鉴于Pfeiffer目前的发现拨款所取得的成就,准圆形黑洞双星的完整解决方案似乎是可行的,这也是我们的目标。我们建议扩展到对偏心双星黑洞的调查。这样的系统--如果它们存在的话--必须以与准圆形双星截然不同的方式形成,并表现出准圆形双星所不具备的性质。不幸的是,古怪的二进制文件更难检测。我们的模拟将有助于检测它们,并--至少--允许量化LIGO对这些来源实际上有多敏感。我们建议加强直接参与LIGO的搜索工作。最后,我们建议开发一种新的、下一代相对论天体物理程序,它消除了现有程序的限制。这将是这个研究小组未来世界级科学的基础。
目标的多样性平衡了LIGO对第一个突破性发现的迫切需求和长期科学领导的战略发展。我们要求为这项研究计划提供约60%的资金,其余资金预计来自其他来源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pfeiffer, Harald其他文献
Two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application.
- DOI:
10.1002/jmri.23724 - 发表时间:
2012-10 - 期刊:
- 影响因子:4.4
- 作者:
Thalhammer, Christof;Renz, Wolfgang;Winter, Lukas;Hezel, Fabian;Rieger, Jan;Pfeiffer, Harald;Graessl, Andreas;Seifert, Frank;Hoffmann, Werner;von Knobelsdorff-Brenkenhoff, Florian;Tkachenko, Valeriy;Schulz-Menger, Jeanette;Kellman, Peter;Niendorf, Thoralf - 通讯作者:
Niendorf, Thoralf
Pfeiffer, Harald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pfeiffer, Harald', 18)}}的其他基金
Numerical studies of compact object binaries
紧凑对象二进制的数值研究
- 批准号:
RGPIN-2014-03899 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Numerical Relativity and Gravitational Wave Astrophysics
数值相对论和引力波天体物理学
- 批准号:
1000229205-2013 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
Numerical studies of compact object binaries
紧凑对象二进制的数值研究
- 批准号:
RGPIN-2014-03899 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Numerical Relativity and Gravitational Wave Astrophysics
数值相对论和引力波天体物理学
- 批准号:
1000229205-2013 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
Numerical studies of compact object binaries
紧凑对象二进制的数值研究
- 批准号:
RGPIN-2014-03899 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Numerical Relativity and Gravitational Wave Astrophysics
数值相对论和引力波天体物理学
- 批准号:
1229205-2013 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
Numerical Relativity and Gravitational Wave Astrophysics
数值相对论和引力波天体物理学
- 批准号:
1000229205-2013 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
Canada Research Chair in Numerical Relativity and Gravitational Wave Astrophysics
加拿大数值相对论和引力波天体物理学研究主席
- 批准号:
1000213542-2008 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Canada Research Chairs
Numerical studies of compact object binaries
紧凑对象二进制的数值研究
- 批准号:
RGPIN-2014-03899 - 财政年份:2014
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Numerical Relativity and Gravitational Wave Astrophysics
数值相对论和引力波天体物理学
- 批准号:
372302-2009 - 财政年份:2013
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
- 批准号:82371528
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
星形胶质细胞介导的髓鞘吞噬参与慢性脑低灌注白质损伤的机制研究
- 批准号:82371307
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
JWST Studies of Compact Galaxy Groups
JWST 致密星系群研究
- 批准号:
574422-2022 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
University Undergraduate Student Research Awards
Engineering Synthetic Guide RNAs and Compact Base Editors for Enhanced In Vivo Delivery
用于增强体内递送的工程合成指南 RNA 和紧凑碱基编辑器
- 批准号:
10541817 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
MRI: Acquisition of a femtosecond laser system for time-resolved studies using Arizona State University's (ASU) Compact X-ray Light Source (CXLS)
MRI:使用亚利桑那州立大学 (ASU) 的紧凑型 X 射线光源 (CXLS) 获取飞秒激光系统,用于时间分辨研究
- 批准号:
2019014 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Studies on holomorphic mappings on the homogeneous unit ball in finite or infinite dimensional complex Banach spaces
有限或无限维复Banach空间中齐次单位球的全纯映射研究
- 批准号:
20K03640 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical studies of compact object binaries
紧凑对象二进制的数值研究
- 批准号:
RGPIN-2014-03899 - 财政年份:2018
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Numerical studies of compact object binaries
紧凑对象二进制的数值研究
- 批准号:
RGPIN-2014-03899 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Feasibility studies of compact cold set corrugator machine
紧凑型冷定型瓦楞机的可行性研究
- 批准号:
102953 - 财政年份:2017
- 资助金额:
$ 3.06万 - 项目类别:
Feasibility Studies
Collaborative Research: Development of Compact, Fast Waterproof Hyper-Spectral Imager & Multi-Channel SpectroPolarimeter for Marine Studies of Coloration and Patterning
合作研究:开发紧凑、快速防水高光谱成像仪
- 批准号:
1640430 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Compact Object Studies in Computational Relativistic Astrophysics via Discontinuous Galerkin Finite Element Methods
通过不连续伽辽金有限元方法进行计算相对论天体物理学中的紧凑物体研究
- 批准号:
418680-2012 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Numerical studies of compact object binaries
紧凑对象二进制的数值研究
- 批准号:
RGPIN-2014-03899 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual