Fluid-structure interactions in pipeline systems

管道系统中的流固耦合

基本信息

  • 批准号:
    RGPIN-2014-04147
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Pipelines are commonly used for transporting fluids in a variety of engineering systems. Pipeline systems typically involve cavities, such as the internal corrugations of flexible pipes, valve seats and side branches in pipeline networks. Turbulent, separated flows that form across the cavity openings can couple with the acoustic waves, and the resulting resonant pressure oscillations can lead to noise, vibrations and ultimately fatigue failure of the pipeline. While acoustically-coupled flows have been the subject of many investigations, insight into the excitation mechanisms specific to various types of acoustic modes remains elusive. The proposed five-year research program will investigate the fundamental differences in the acoustic response of the pipeline systems associated with the global and the trapped acoustic modes. This new insight will be used to develop methods of passive and active control of the flow-induced vibrations (FIV) and to formulate reduced-order models for simulations of acoustic responses of engineering systems. Moreover, novel applications of the flow-induced acoustic excitation of pipeline-cavity systems, such as energy harvesting, will be explored in the course of the proposed research program. In addition to studying the fluid-structure interactions (FSI) leading to the pipeline failure, the proposed research program will also look into prediction of the dispersion of hazardous gas clouds in the vicinity of a leak from a pipeline. In particular, hazard assessment of CO2 pipelines is a necessary and integral part of the Enhanced Oil Recovery (EOR) and the Carbon Capture and Storage (CCS) processes. To date, safety aspects of CO2 transportation have not been adequately studied. Current efforts in CCS are largely focused on capture and storage facilities, while the transportation aspects received relatively little attention. Energy production in Canada was responsible for up to 253 Mt CO2 equivalent of greenhouse gases in 2010, representing 36% of its total emissions. Mitigating greenhouse gas emissions using CO2 sequestration is an important part of an efficient strategy aiming to significantly reduce greenhouse gas emissions. The proposed research program will address important safety issues that can impact the regulatory framework of a CO2 sequestration infrastructure. A better understanding of such issues is critical to public acceptance of sequestration technologies. The proposed research program aims to investigate and quantify the extent of hazardous gas concentrations in the vicinity of a leak from a high-pressure pipeline in a variety of scenarios (e.g. proximity to ground and other solid surfaces, with and without cross-flow, and various leak geometries). The proposed research is a combined experimental and computational investigation that is complemented by theoretical modeling. Fluid flow will be simulated by solving the unsteady Reynolds-averaged Navier-Stokes (URANS) equations, and a large eddy simulation (LES) approach will be employed for selected system geometries and inflow conditions. Formation of liquid droplets and solid particles will be modeled by solving an equation for the probability distribution function for the corresponding phase. Digital particle image velocimetry (PIV) will be used to measure velocity fields in physical experiments, and the results will provide insight into the structure of the acoustic source(s) in the pipeline and into the momentum transfer processes of the gas leaks. In order to quantify the 3D flow effects, a tomographic version of PIV will be implemented. In addition to velocity measurements, a technique of infrared planar laser-induced fluorescence (IR PLIF) will be developed to measure the concentration of the gaseous phase of the CO2.
在各种工程系统中,管道通常用于输送流体。管道系统通常包括空腔,如管道网络中软管、阀座和侧支的内部波纹。穿过空腔开口形成的湍流分离流动可能与声波耦合,由此产生的共振压力振荡可能导致噪声、振动,并最终导致管道的疲劳失效。虽然声学耦合流动已经成为许多研究的主题,但对各种声学模式特有的激发机制的深入了解仍然是难以捉摸的。 拟议的五年研究计划将调查与全球声学模式和捕获声学模式相关的管道系统的声学响应的根本差异。这一新见解将被用来发展被动和主动控制流致振动(FIV)的方法,并建立用于模拟工程系统声响应的降阶模型。此外,在所提出的研究计划中,还将探索流致声激励在管道-空腔系统中的新应用,例如能量收集。 除了研究导致管道故障的流体-结构相互作用(FSI)外,拟议的研究计划还将研究危险气体云在管道泄漏附近的扩散预测。特别是,二氧化碳管道的危害评估是提高石油采收率(EOR)和碳捕获和封存(CCS)过程中必要和不可或缺的一部分。到目前为止,二氧化碳运输的安全方面还没有得到充分的研究。目前CCS的努力主要集中在捕获和储存设施上,而运输方面受到的关注相对较少。 2010年,加拿大的能源生产产生了高达253万吨二氧化碳当量的温室气体,占其总排放量的36%。通过二氧化碳封存减少温室气体排放是旨在大幅减少温室气体排放的有效战略的重要组成部分。拟议的研究计划将解决可能影响二氧化碳封存基础设施监管框架的重要安全问题。更好地了解这些问题对于公众接受自动减支技术至关重要。拟议的研究计划旨在调查和量化各种情况下高压管道泄漏附近的危险气体浓度范围(例如,接近地面和其他固体表面,有或没有横流,以及各种泄漏几何形状)。 建议的研究是一项实验和计算相结合的研究,并辅之以理论建模。流体流动将通过求解非定常雷诺平均Navier-Stokes(URANS)方程来模拟,并将针对选定的系统几何形状和流入条件采用大涡模拟(LES)方法。液滴和固体颗粒的形成将通过求解相应相的概率分布函数的方程来模拟。 数字粒子图像测速仪将用于物理实验中的速度场测量,其结果将为深入了解管道中声源(S)的结构和气体泄漏的动量传递过程提供帮助。为了量化3D流动效应,将实施层析版本的PIV。除了速度测量外,还将开发一种红外平面激光诱导荧光(IR PLIF)技术来测量二氧化碳的气相浓度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oshkai, Peter其他文献

Experimental measurements and numerical simulations of underwater radiated noise from a model-scale propeller in uniform inflow
  • DOI:
    10.1016/j.oceaneng.2022.111409
  • 发表时间:
    2022-05-19
  • 期刊:
  • 影响因子:
    5
  • 作者:
    McIntyre, Duncan;Rahimpour, Mostafa;Oshkai, Peter
  • 通讯作者:
    Oshkai, Peter
The Influence of the Aortic Root Geometry on Flow Characteristics of a Prosthetic Heart Valve
Influence of propellers and operating conditions on underwater radiated noise from coastal ferry vessels
  • DOI:
    10.1016/j.oceaneng.2021.109075
  • 发表时间:
    2021-05-16
  • 期刊:
  • 影响因子:
    5
  • 作者:
    McIntyre, Duncan;Lee, Waltfred;Oshkai, Peter
  • 通讯作者:
    Oshkai, Peter
Flow-induced loading on and unsteady flow structure in the wake of bluff perforated plates at zero incidence
  • DOI:
    10.1016/j.jfluidstructs.2018.06.007
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Rahimpour, Mostafa;Bossi, Filippo Carlo;Oshkai, Peter
  • 通讯作者:
    Oshkai, Peter
Investigation of Diametral Acoustic Modes in a Model of a Steam Control Gate Valve

Oshkai, Peter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oshkai, Peter', 18)}}的其他基金

Flow-induced sound and vibrations with applications to pipeline safety and mitigation of ocean noise pollution
流动引起的声音和振动在管道安全和减轻海洋噪声污染中的应用
  • 批准号:
    RGPIN-2020-06001
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Flow-induced sound and vibrations with applications to pipeline safety and mitigation of ocean noise pollution
流动引起的声音和振动在管道安全和减轻海洋噪声污染中的应用
  • 批准号:
    RGPIN-2020-06001
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Flow-induced sound and vibrations with applications to pipeline safety and mitigation of ocean noise pollution
流动引起的声音和振动在管道安全和减轻海洋噪声污染中的应用
  • 批准号:
    RGPIN-2020-06001
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Fluid-structure interactions in pipeline systems
管道系统中的流固耦合
  • 批准号:
    RGPIN-2014-04147
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of acoustic noise emissions from marine vessels
船舶噪声排放分析
  • 批准号:
    532217-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Tomographic Particle Image Velocimetry System
断层粒子图像测速系统
  • 批准号:
    RTI-2019-00141
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Tools and Instruments
Fluid-structure interactions in pipeline systems
管道系统中的流固耦合
  • 批准号:
    RGPIN-2014-04147
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Fluid-structure interactions in pipeline systems
管道系统中的流固耦合
  • 批准号:
    RGPIN-2014-04147
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Wavemaker development
造浪机开发
  • 批准号:
    491612-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Investigation of flame-induced hydrogen leaks
火焰引起的氢气泄漏的调查
  • 批准号:
    463831-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Rh-N4位点催化醇类氧化反应的微观机制与构效关系研究
  • 批准号:
    22302208
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
体内亚核小体图谱的绘制及其调控机制研究
  • 批准号:
    32000423
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
  • 批准号:
    32000425
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
  • 批准号:
    31970585
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
  • 批准号:
    51973054
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
  • 批准号:
    31960136
  • 批准年份:
    2019
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
染色质三维结构等位效应的亲代传递研究
  • 批准号:
    31970586
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
染色质三维构象新型调控因子的机制研究
  • 批准号:
    31900431
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
  • 批准号:
    31970589
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
磷酸化和可变剪切修饰影响Bnip3调控线粒体自噬和细胞凋亡的结构及功能研究
  • 批准号:
    31670742
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidating High Oral Fluid Exposure Mechanisms of Buprenorphine to Reduce Dental Caries
阐明丁丙诺啡的高口腔液暴露机制以减少龋齿
  • 批准号:
    10765181
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Patient specific computational modeling of fluid-structure interactions of cerebrospinal fluid for biomarkers in Alzheimer's disease
阿尔茨海默病生物标志物脑脊液流固相互作用的患者特定计算模型
  • 批准号:
    10644281
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
CAREER: Fluid-Structure Interactions of Ultrasoft Shape-Morphing Membranes
职业:超软变形膜的流固相互作用
  • 批准号:
    2340593
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Profiling the Fluid Assisted Dissemination of Pre-malignant cells in Fallopian Tubes
分析输卵管癌前细胞的液体辅助传播
  • 批准号:
    10718158
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
CAREER: Controlling fluid structure interactions within an oscillating foil turbine array
职业:控制振荡箔涡轮阵列内的流体结构相互作用
  • 批准号:
    2338957
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and Harnessing the Dynamics of Complex Fluid-Structure Interactions
职业:理解和利用复杂流固相互作用的动力学
  • 批准号:
    2237542
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Bluff-body wakes and fluid-structure interactions
钝体尾流和流固耦合
  • 批准号:
    RGPIN-2018-03760
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Time Accurate Fluid-Structure Interactions
合作研究:时间精确的流固耦合
  • 批准号:
    2208220
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CAREER: Fluid-Structure Interactions in Pulsatile Flow
职业:脉动流中的流固相互作用
  • 批准号:
    2145189
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Chronic Alcohol, Dementia, and CNS Fluid Homeostasis
慢性酒精、痴呆和中枢神经系统液体稳态
  • 批准号:
    10467520
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了