Design of a Chemical Biology Toolkit to Monitor Protein Kinase Function in Time and Space
时空监测蛋白激酶功能的化学生物学工具包的设计
基本信息
- 批准号:RGPIN-2014-04186
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our goal is to define how regulatory information is transmitted within cells that make up every living organism. Virtually every living process is carried out by proteins that function as enzymes to catalyze chemical reactions or transmit regulatory information, as machines or motors that generate force or enable movement, or as structural constituents that give shape and form to cells, tissues or organs, and ultimately to the entire body. Almost all cellular proteins are regulated by a process known as phosphorylation that involves chemical modification at specific sites on the protein. Consequently, this proposal will focus on cellular enzymes known as kinases that are responsible for catalyzing protein phosphorylation in the cells of all animals and plants.
The widespread role and importance of kinases in cell regulation is illustrated by two important findings. Firstly, there are many distinct kinases present in every cell. In fact, there are more than 100 different kinases present in baker’s yeast and in humans, there are more than 500 different kinases. Secondly, kinases often carry out exactly the same function in different organisms. For example, several yeast kinases can be replaced with a kinase from another organism (such as a fly, mouse or human) without any undesirable consequences. Despite the obvious importance and widespread impact of protein kinases in the transmission of regulatory information, our understanding of their precise functions in living cells remains very limited. In fact, much of our current knowledge of kinases has been obtained by performing biochemical measurements in cell extracts or tissue homogenates that do not retain many of the features of living cells.
To overcome this limitation, this proposal will be focused on the development of two complementary strategies to define the precise actions of specific kinases in living cells. Initial studies will be performed with a kinase known as CK2 where our lab has established a leadership position that enables us to perform studies not possible elsewhere. Once established for CK2, we expect that our strategies can be readily adapted to investigation of other kinases. Our first strategy will involve the design of kinase mutants (designated analog-sensitive mutants) to make them susceptible to drugs (known as ATP-analogs) that do not affect any normal cellular proteins. Therefore, when we introduce the analog-sensitive kinase into cells, we will be able to use the ATP-analogs to modulate the activity of the analog-sensitive kinase without affecting any other cellular constituents. For these studies, we will also take advantage of the conserved function of kinases in yeast and in human cells. Results from initial studies in yeast will be used to guide our subsequent studies in human cells (using widely accepted human cell lines). These studies will enable us to identify – using living cells – cellular events that are directly regulated by specific kinases. The second strategy will involve the design of fluorescent sensors that can be introduced into cells to detect and monitor the activity of individual kinases within living cells. Using microscopes equipped with digital cameras, we will perform time-lapse microscopy to monitor the spatiotemporal dynamics of protein kinases in cells (ie. we will determine when and where protein kinases are active within living cells).
Collectively, these studies will provide new insights regarding the precise actions of individual protein kinases within living cells. Given the universal role of protein phosphorylation as a regulatory mechanism, this information is critical to our understanding of how all plants and animals respond to changes both within an organism and in the environment.
我们的目标是确定调控信息是如何在构成每个生物体的细胞内传递的。事实上,每一个生命过程都是由蛋白质进行的,蛋白质的功能是催化化学反应或传递调节信息的酶,产生力或使运动成为可能的机器或马达,或者是赋予细胞,组织或器官形状和形式的结构成分,并最终赋予整个身体。 几乎所有的细胞蛋白质都受到磷酸化过程的调控,磷酸化过程涉及蛋白质特定位点的化学修饰。 因此,这项建议将集中在细胞酶,称为激酶,负责催化所有动物和植物细胞中的蛋白质磷酸化。
激酶在细胞调节中的广泛作用和重要性由两个重要发现说明。 首先,每个细胞中都存在许多不同的激酶。 事实上,面包酵母中有100多种不同的激酶,而人类中有500多种不同的激酶。其次,激酶在不同的生物体中通常执行完全相同的功能。 例如,几种酵母激酶可以用来自另一种生物体(如苍蝇、小鼠或人)的激酶替代,而不会产生任何不良后果。 尽管蛋白激酶在调控信息传递中具有明显的重要性和广泛的影响,但我们对它们在活细胞中的确切功能的理解仍然非常有限。 事实上,我们目前对激酶的大部分知识都是通过对细胞提取物或组织匀浆进行生化测量获得的,这些细胞提取物或组织匀浆不保留活细胞的许多特征。
为了克服这一局限性,该提案将集中在两个互补的战略,以确定在活细胞中的特定激酶的精确行动的发展。 最初的研究将使用一种称为CK2的激酶进行,我们的实验室已经建立了领导地位,使我们能够进行其他地方不可能进行的研究。 一旦建立CK2,我们希望我们的策略可以很容易地适应其他激酶的调查。我们的第一个策略是设计激酶突变体(称为类似物敏感突变体),使它们对不影响任何正常细胞蛋白质的药物(称为ATP类似物)敏感。 因此,当我们将类似物敏感性激酶引入细胞时,我们将能够使用ATP类似物来调节类似物敏感性激酶的活性,而不影响任何其他细胞成分。 对于这些研究,我们还将利用酵母和人类细胞中激酶的保守功能。 在酵母中的初步研究结果将用于指导我们在人类细胞中的后续研究(使用广泛接受的人类细胞系)。 这些研究将使我们能够使用活细胞识别由特定激酶直接调控的细胞事件。 第二种策略将涉及荧光传感器的设计,可以引入细胞中,以检测和监测活细胞内单个激酶的活性。 使用配备数码相机的显微镜,我们将进行延时显微镜,以监测细胞中蛋白激酶的时空动力学(即。我们将确定蛋白激酶在活细胞内何时何地活跃)。
总的来说,这些研究将为活细胞内单个蛋白激酶的精确作用提供新的见解。 鉴于蛋白质磷酸化作为一种调节机制的普遍作用,这些信息对于我们理解所有植物和动物如何对生物体和环境中的变化做出反应至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Litchfield, David其他文献
Litchfield, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Litchfield, David', 18)}}的其他基金
Application of a Chemical Biology Toolkit to Decipher Kinase Activity in Time and Space.
应用化学生物学工具包破译时空激酶活性。
- 批准号:
RGPIN-2020-06462 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Application of a Chemical Biology Toolkit to Decipher Kinase Activity in Time and Space.
应用化学生物学工具包破译时空激酶活性。
- 批准号:
RGPIN-2020-06462 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Application of a Chemical Biology Toolkit to Decipher Kinase Activity in Time and Space.
应用化学生物学工具包破译时空激酶活性。
- 批准号:
RGPIN-2020-06462 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Design of a Chemical Biology Toolkit to Monitor Protein Kinase Function in Time and Space
时空监测蛋白激酶功能的化学生物学工具包的设计
- 批准号:
RGPIN-2014-04186 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Design of a Chemical Biology Toolkit to Monitor Protein Kinase Function in Time and Space
时空监测蛋白激酶功能的化学生物学工具包的设计
- 批准号:
RGPIN-2014-04186 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Design of a Chemical Biology Toolkit to Monitor Protein Kinase Function in Time and Space
时空监测蛋白激酶功能的化学生物学工具包的设计
- 批准号:
RGPIN-2014-04186 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Robotic Instrumentation to Establish Workflows for Systematic Cell-Based Analyses.
用于建立基于细胞的系统分析工作流程的机器人仪器。
- 批准号:
RTI-2017-00538 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Research Tools and Instruments
Design of a Chemical Biology Toolkit to Monitor Protein Kinase Function in Time and Space
时空监测蛋白激酶功能的化学生物学工具包的设计
- 批准号:
RGPIN-2014-04186 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Protein engineering to design novel regulators of cell proliferation
蛋白质工程设计新型细胞增殖调节剂
- 批准号:
227275-1999 - 财政年份:2001
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Health Research Projects
Protein engineering to design novel regulators of cell proliferation
蛋白质工程设计新型细胞增殖调节剂
- 批准号:
227275-1999 - 财政年份:2000
- 资助金额:
$ 2.62万 - 项目类别:
Collaborative Health Research Projects
相似国自然基金
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Program in Chemical Biology
REU 网站:化学生物学项目
- 批准号:
2349507 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Vanderbilt Chemical Biology Interface Training Program
范德比尔特化学生物学界面培训计划
- 批准号:
10626531 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Chemical Biology Strategies to Resolve Plasmodium Heat Shock Protein Function
解决疟原虫热休克蛋白功能的化学生物学策略
- 批准号:
10734886 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Chemical biology of voltage-gated cation channels
电压门控阳离子通道的化学生物学
- 批准号:
10552311 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Regulatory Mechanism of Organelle distribution Approached by Chemical Biology
从化学生物学角度探讨细胞器分布的调控机制
- 批准号:
23H02106 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structural and Chemical Biology of Targeted Degraders of NSD2
NSD2 靶向降解剂的结构和化学生物学
- 批准号:
483396 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Operating Grants
KinoGlu: A Chemical Strategy to illuminate CNS Biology
KinoGlu:阐明中枢神经系统生物学的化学策略
- 批准号:
EP/X020088/1 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Research Grant
Chemical biology studies of MmpL3 inhibition and resistance in mycobacteria
分枝杆菌 MmpL3 抑制和耐药性的化学生物学研究
- 批准号:
10734240 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:














{{item.name}}会员




