Algorithms for Lattice Basis Reduction and Applications
格基约简算法及应用
基本信息
- 批准号:RGPIN-2014-04252
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lattice basis reduction, founded by Minkowski, has been successfully applied to numerous areas, such as Multi-Input Multi-Output (MIMO) signal detection, the GGH (Goldreich, Goldwasser, Halvevi) cryptosystem decryption, Global Positioning Systems (GPS) and symbolic computation.
In MIMO detection, although the problem size is small, the real-time system demands quick response, On the other hand, in cryptography, the problem size is large, but reasonably long computation time can be tolerated. In either case, algorithms that are fast for small problems and their complexity does not grow fast as the problem size increases are necessary. The focus of this program is efficient lattice basis reduction algorithms that produce good quality results and their applications. They can benefit Canadian researchers and industry in communications by reducing bit error rate, in security by improving cryptography systems and in symbolic computation by providing fast polynomial factorizations.
There are different notions of lattice basis reduction, among which the Minkowski reduction is the strongest, in other words, it defines a basis consisting of shortest vectors. The other notions are approximations of the Minkowski reduction. In particular, the famous and widely used LLL (Lenstra, Lenstra, Lovasz) reduction method is fast and produces good approximations of the Minkowski reduction in practice for small size problems. All existing lattice basis reduction methods, like the LLL algorithm, are based on reducing the vector lengths of a given basis for a lattice. Recently, we proposed a completely new approach: Jacobi-type methods based on improving the orthogonality between given basis vectors for a lattice. In this program, starting from our recently developed generic Jacobi method for basis reduction, we will first improve the generic algorithm and analyze its convergence and complexity. It is known that computing an optimally reduced basis is a non-polynomial time problem. Our goal is to develop polynomial time Jacobi-type methods that compute good approximations of an optimal solution. Practically, we also investigate techniques to improve running time for small to moderate size problems. We then investigate applications in lattice reduction aided MIMO detection and GGH attacks. Moreover, Jacobi-type methods are attractive, because they are inherently parallel. High performance can be achieved by implementing the methods on GPUs. In this program, we also explore parallel lattices basis reduction algorithms and their GPU implementations. We strive for the best. The efficiency of our methods will be measured by both theoretical complexity and practical running time. The quality of our methods will be measured by the commonly used orthogonality defect and the condition number of the computed reduced bases. The challenge is that the well-known LLL algorithm, which is regarded as the best practical lattice basis reduction algorithm, will be used as our comparison benchmark.
The long-term goal of the program is to develop a reliable software and transfer the technology to communication, security, and software industries, contributing to wireless communications, computer security, and softwares like Maple and Sage for research and education in Canada.
格基约简是Minkowski提出的一种新的基约简方法,已成功应用于多输入多输出(MIMO)信号检测、GGH(Goldreich,Goldwasser,Halvevi)密码系统解密、全球定位系统(GPS)和符号计算等领域。
在MIMO检测中,虽然问题大小很小,但实时系统要求快速响应。另一方面,在密码学中,问题大小很大,但可以容忍相当长的计算时间。在这两种情况下,算法是快速的小问题和他们的复杂性不会增长快,因为问题的大小增加是必要的。该计划的重点是高效的格基约简算法,产生良好的质量结果及其应用。它们可以使加拿大的研究人员和工业界在通信方面受益,因为它们可以降低误码率,在安全方面可以改进密码系统,在符号计算方面可以提供快速的多项式分解。
格基约化有不同的概念,其中Minkowski约化是最强的,换句话说,它定义了一个由最短向量组成的基。其他概念是闵可夫斯基约化的近似。特别是,著名的和广泛使用的LLL(Lenstra,Lenstra,Lovasz)减少方法是快速的,并产生良好的近似的Minkowski减少在实践中的小尺寸的问题。所有现有的格基约简方法,如LLL算法,都是基于减少格的给定基的向量长度。最近,我们提出了一个全新的方法:Jacobi型方法的基础上提高给定的基向量之间的正交性的格。在这个程序中,我们将从我们最近开发的通用雅可比基约简方法开始,首先改进通用算法,并分析其收敛性和复杂性。已知计算最优约简基是一个非多项式时间问题。我们的目标是开发多项式时间雅可比型的方法,计算良好的近似的最优解。实际上,我们还研究技术,以提高运行时间为小到中等大小的问题。然后,我们研究应用格约简辅助MIMO检测和GGH攻击。此外,雅可比型方法是有吸引力的,因为它们本质上是并行的。通过在GPU上实现这些方法,可以实现高性能。在这个程序中,我们还探讨了并行格基约简算法及其GPU实现。我们力求做到最好。我们的方法的效率将通过理论复杂度和实际运行时间来衡量。我们的方法的质量将衡量常用的正交亏损和条件数的计算减少基地。挑战在于,著名的LLL算法,这被认为是最好的实用格基约简算法,将被用作我们的比较基准。
该计划的长期目标是开发可靠的软件,并将技术转移到通信,安全和软件行业,为加拿大的无线通信,计算机安全以及Maple和Sage等软件的研究和教育做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiao, Sanzheng其他文献
Structured condition numbers of structured Tikhonov regularization problem and their estimations
结构化Tikhonov正则化问题的结构化条件数及其估计
- DOI:
10.1016/j.cam.2016.05.023 - 发表时间:
2016-01 - 期刊:
- 影响因子:2.4
- 作者:
Diao, Huai-An;Wei, Yimin;Qiao, Sanzheng - 通讯作者:
Qiao, Sanzheng
A novel anonymization algorithm: Privacy protection and knowledge preservation
- DOI:
10.1016/j.eswa.2009.05.097 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:8.5
- 作者:
Yang, Weijia;Qiao, Sanzheng - 通讯作者:
Qiao, Sanzheng
对称代数Riccati方程的扰动分析和条件数
- DOI:
- 发表时间:
- 期刊:
- 影响因子:6.4
- 作者:
Wei, Yimin;Lin, Yiqin;Zhou, Liangmin;Qiao, Sanzheng - 通讯作者:
Qiao, Sanzheng
A Lanczos bidiagonalization algorithm for Hankel matrices
- DOI:
10.1016/j.laa.2008.01.012 - 发表时间:
2009-03-01 - 期刊:
- 影响因子:1.1
- 作者:
Browne, Kevin;Qiao, Sanzheng;Wei, Yimin - 通讯作者:
Wei, Yimin
Qiao, Sanzheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiao, Sanzheng', 18)}}的其他基金
Algorithms for Lattice Basis Reduction and Applications
格基约简算法及应用
- 批准号:
RGPIN-2014-04252 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Lattice Basis Reduction and Applications
格基约简算法及应用
- 批准号:
RGPIN-2014-04252 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Lattice Basis Reduction and Applications
格基约简算法及应用
- 批准号:
RGPIN-2014-04252 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Integer least squares and sphere decoding
整数最小二乘和球体解码
- 批准号:
46301-2009 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Integer least squares and sphere decoding
整数最小二乘和球体解码
- 批准号:
46301-2009 - 财政年份:2012
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Integer least squares and sphere decoding
整数最小二乘和球体解码
- 批准号:
46301-2009 - 财政年份:2011
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Integer least squares and sphere decoding
整数最小二乘和球体解码
- 批准号:
46301-2009 - 财政年份:2010
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Integer least squares and sphere decoding
整数最小二乘和球体解码
- 批准号:
46301-2009 - 财政年份:2009
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Structured matrices: analysis and applications
结构化矩阵:分析与应用
- 批准号:
46301-2004 - 财政年份:2008
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Structured matrices: analysis and applications
结构化矩阵:分析与应用
- 批准号:
46301-2004 - 财政年份:2007
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lattice结构IIR数字滤波器设计的序贯部分优化算法
- 批准号:62001261
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
皮米级发射度的衍射极限储存环lattice结构及动力学研究
- 批准号:11875259
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
基于结构化Lattice编码的CSMA(载波侦听多址接入)多包传输技术研究
- 批准号:61571373
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Lattice Boltzmann方法的相间传质过程界面对流模拟和实验研究
- 批准号:21176171
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Lattice的汉语语音主题分类方法研究
- 批准号:60702053
- 批准年份:2007
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于Lattice滤波器的故障诊断方法研究
- 批准号:69574015
- 批准年份:1995
- 资助金额:8.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Studentship
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Unravelling the neutron lifetime puzzle with lattice quantum chromodynamics
用晶格量子色动力学解开中子寿命之谜
- 批准号:
DP240102839 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Projects
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
- 批准号:
24K17055 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
- 批准号:
2401388 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
- 批准号:
2311430 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
- 批准号:
23K13096 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design of quantum phases with long-periods by structural defection on a lattice
通过晶格结构缺陷设计长周期量子相
- 批准号:
23KJ0801 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
elucidation of magnetic field induced quantum phases and development of kagome-lattice antiferromagnets in doubly ordered pyrochlore
双序烧绿石中磁场诱导量子相的阐明和戈薇晶格反铁磁体的开发
- 批准号:
23H01123 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)